| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
| ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsexv2d.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| ceqsexv2d | ⊢ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2d.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 3462 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | ceqsexv2d.3 | . . 3 ⊢ 𝜓 | |
| 4 | ceqsexv2d.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝑥 = 𝐴 → 𝜑) |
| 6 | 2, 5 | eximii 1837 | 1 ⊢ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: en0 8966 en0r 8968 ensn1 8969 0domg 9045 tz9.1 9658 cplem2 9819 karden 9824 pwmnd 18846 2lgslem1 27338 griedg0prc 29244 1loopgrvd2 29484 bnj150 34859 permaxsep 44990 permaxnul 44991 permaxpow 44992 permaxpr 44993 permaxun 44994 permaxinf2lem 44995 nregmodel 45000 fnchoice 45016 nfermltl8rev 47736 nfermltl2rev 47737 nfermltlrev 47738 nn0mnd 48160 rrx2xpreen 48701 |
| Copyright terms: Public domain | W3C validator |