MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexv2d Structured version   Visualization version   GIF version

Theorem ceqsexv2d 3496
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.)
Hypotheses
Ref Expression
ceqsexv2d.1 𝐴 ∈ V
ceqsexv2d.2 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsexv2d.3 𝜓
Assertion
Ref Expression
ceqsexv2d 𝑥𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsexv2d
StepHypRef Expression
1 ceqsexv2d.1 . . 3 𝐴 ∈ V
21isseti 3462 . 2 𝑥 𝑥 = 𝐴
3 ceqsexv2d.3 . . 3 𝜓
4 ceqsexv2d.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbiri 258 . 2 (𝑥 = 𝐴𝜑)
62, 5eximii 1837 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  en0  8966  en0r  8968  ensn1  8969  0domg  9045  tz9.1  9660  cplem2  9821  karden  9826  pwmnd  18847  2lgslem1  27339  griedg0prc  29245  1loopgrvd2  29485  bnj150  34860  permaxsep  44991  permaxnul  44992  permaxpow  44993  permaxpr  44994  permaxun  44995  permaxinf2lem  44996  nregmodel  45001  fnchoice  45017  nfermltl8rev  47737  nfermltl2rev  47738  nfermltlrev  47739  nn0mnd  48161  rrx2xpreen  48702
  Copyright terms: Public domain W3C validator