| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
| ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsexv2d.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| ceqsexv2d | ⊢ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2d.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 3468 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | ceqsexv2d.3 | . . 3 ⊢ 𝜓 | |
| 4 | ceqsexv2d.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝑥 = 𝐴 → 𝜑) |
| 6 | 2, 5 | eximii 1837 | 1 ⊢ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 |
| This theorem is referenced by: en0 8992 en0r 8994 ensn1 8995 0domg 9074 tz9.1 9689 cplem2 9850 karden 9855 pwmnd 18871 2lgslem1 27312 griedg0prc 29198 1loopgrvd2 29438 bnj150 34873 permaxsep 45004 permaxnul 45005 permaxpow 45006 permaxpr 45007 permaxun 45008 permaxinf2lem 45009 nregmodel 45014 fnchoice 45030 nfermltl8rev 47747 nfermltl2rev 47748 nfermltlrev 47749 nn0mnd 48171 rrx2xpreen 48712 |
| Copyright terms: Public domain | W3C validator |