Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) |
Ref | Expression |
---|---|
ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsexv2d.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
ceqsexv2d | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv2d.3 | . 2 ⊢ 𝜓 | |
2 | ceqsexv2d.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | ceqsexv2d.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | ceqsexv 3455 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
5 | 4 | biimpri 231 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
6 | exsimpr 1877 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
7 | 1, 5, 6 | mp2b 10 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∃wex 1787 ∈ wcel 2110 Vcvv 3408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-clel 2816 |
This theorem is referenced by: en0 8691 en0OLD 8692 ensn1 8694 ensn1OLD 8695 tz9.1 9345 cplem2 9506 karden 9511 pwmnd 18364 2lgslem1 26275 griedg0prc 27352 1loopgrvd2 27591 bnj150 32569 fnchoice 42245 nfermltl8rev 44867 nfermltl2rev 44868 nfermltlrev 44869 nn0mnd 45046 rrx2xpreen 45738 |
Copyright terms: Public domain | W3C validator |