Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) |
Ref | Expression |
---|---|
ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsexv2d.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
ceqsexv2d | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv2d.3 | . 2 ⊢ 𝜓 | |
2 | ceqsexv2d.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | ceqsexv2d.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | ceqsexv 3469 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
5 | 4 | biimpri 227 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
6 | exsimpr 1873 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
7 | 1, 5, 6 | mp2b 10 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: en0 8758 en0OLD 8759 ensn1 8761 ensn1OLD 8762 tz9.1 9418 cplem2 9579 karden 9584 pwmnd 18491 2lgslem1 26447 griedg0prc 27534 1loopgrvd2 27773 bnj150 32756 fnchoice 42461 nfermltl8rev 45082 nfermltl2rev 45083 nfermltlrev 45084 nn0mnd 45261 rrx2xpreen 45953 |
Copyright terms: Public domain | W3C validator |