| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
| ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsexv2d.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| ceqsexv2d | ⊢ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2d.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 3454 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | ceqsexv2d.3 | . . 3 ⊢ 𝜓 | |
| 4 | ceqsexv2d.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝑥 = 𝐴 → 𝜑) |
| 6 | 2, 5 | eximii 1838 | 1 ⊢ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: en0 8946 en0r 8948 ensn1 8949 0domg 9023 tz9.1 9625 cplem2 9789 karden 9794 pwmnd 18851 2lgslem1 27338 griedg0prc 29249 1loopgrvd2 29489 bnj150 34895 permaxsep 45105 permaxnul 45106 permaxpow 45107 permaxpr 45108 permaxun 45109 permaxinf2lem 45110 nregmodel 45115 fnchoice 45131 nfermltl8rev 47847 nfermltl2rev 47848 nfermltlrev 47849 gpg5edgnedg 48235 nn0mnd 48284 rrx2xpreen 48825 |
| Copyright terms: Public domain | W3C validator |