![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
Ref | Expression |
---|---|
ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsexv2d.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
ceqsexv2d | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv2d.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 3506 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
3 | ceqsexv2d.3 | . . 3 ⊢ 𝜓 | |
4 | ceqsexv2d.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝑥 = 𝐴 → 𝜑) |
6 | 2, 5 | eximii 1835 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: en0 9078 en0OLD 9079 en0r 9081 ensn1 9082 ensn1OLD 9083 0domg 9166 tz9.1 9798 cplem2 9959 karden 9964 pwmnd 18972 2lgslem1 27456 griedg0prc 29299 1loopgrvd2 29539 bnj150 34852 fnchoice 44929 nfermltl8rev 47616 nfermltl2rev 47617 nfermltlrev 47618 nn0mnd 47902 rrx2xpreen 48453 |
Copyright terms: Public domain | W3C validator |