![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version |
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) |
Ref | Expression |
---|---|
ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
ceqsexv2d.3 | ⊢ 𝜓 |
Ref | Expression |
---|---|
ceqsexv2d | ⊢ ∃𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexv2d.3 | . 2 ⊢ 𝜓 | |
2 | ceqsexv2d.1 | . . . 4 ⊢ 𝐴 ∈ V | |
3 | ceqsexv2d.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | ceqsexv 3520 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
5 | 4 | biimpri 227 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
6 | exsimpr 1864 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
7 | 1, 5, 6 | mp2b 10 | 1 ⊢ ∃𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-clel 2804 |
This theorem is referenced by: en0 9015 en0OLD 9016 en0r 9018 ensn1 9019 ensn1OLD 9020 0domg 9102 tz9.1 9726 cplem2 9887 karden 9892 pwmnd 18862 2lgslem1 27282 griedg0prc 29029 1loopgrvd2 29269 bnj150 34416 fnchoice 44289 nfermltl8rev 46982 nfermltl2rev 46983 nfermltlrev 46984 nn0mnd 47129 rrx2xpreen 47680 |
Copyright terms: Public domain | W3C validator |