MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexv2d Structured version   Visualization version   GIF version

Theorem ceqsexv2d 3499
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.)
Hypotheses
Ref Expression
ceqsexv2d.1 𝐴 ∈ V
ceqsexv2d.2 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsexv2d.3 𝜓
Assertion
Ref Expression
ceqsexv2d 𝑥𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem ceqsexv2d
StepHypRef Expression
1 ceqsexv2d.1 . . 3 𝐴 ∈ V
21isseti 3465 . 2 𝑥 𝑥 = 𝐴
3 ceqsexv2d.3 . . 3 𝜓
4 ceqsexv2d.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4mpbiri 258 . 2 (𝑥 = 𝐴𝜑)
62, 5eximii 1837 1 𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  en0  8989  en0r  8991  ensn1  8992  0domg  9068  tz9.1  9682  cplem2  9843  karden  9848  pwmnd  18864  2lgslem1  27305  griedg0prc  29191  1loopgrvd2  29431  bnj150  34866  permaxsep  44997  permaxnul  44998  permaxpow  44999  permaxpr  45000  permaxun  45001  permaxinf2lem  45002  nregmodel  45007  fnchoice  45023  nfermltl8rev  47743  nfermltl2rev  47744  nfermltlrev  47745  nn0mnd  48167  rrx2xpreen  48708
  Copyright terms: Public domain W3C validator