| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsexv2d | Structured version Visualization version GIF version | ||
| Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by Thierry Arnoux, 10-Sep-2016.) Shorten, reduce dv conditions. (Revised by Wolf Lammen, 5-Jun-2025.) (Proof shortened by SN, 5-Jun-2025.) |
| Ref | Expression |
|---|---|
| ceqsexv2d.1 | ⊢ 𝐴 ∈ V |
| ceqsexv2d.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsexv2d.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| ceqsexv2d | ⊢ ∃𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsexv2d.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 3482 | . 2 ⊢ ∃𝑥 𝑥 = 𝐴 |
| 3 | ceqsexv2d.3 | . . 3 ⊢ 𝜓 | |
| 4 | ceqsexv2d.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | mpbiri 258 | . 2 ⊢ (𝑥 = 𝐴 → 𝜑) |
| 6 | 2, 5 | eximii 1837 | 1 ⊢ ∃𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 |
| This theorem is referenced by: en0 9037 en0r 9039 ensn1 9040 0domg 9119 tz9.1 9748 cplem2 9909 karden 9914 pwmnd 18920 2lgslem1 27362 griedg0prc 29248 1loopgrvd2 29488 bnj150 34912 permaxsep 44999 permaxnul 45000 permaxpow 45001 permaxpr 45002 permaxun 45003 permaxinf2lem 45004 fnchoice 45020 nfermltl8rev 47723 nfermltl2rev 47724 nfermltlrev 47725 nn0mnd 48121 rrx2xpreen 48666 |
| Copyright terms: Public domain | W3C validator |