MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexvOLD Structured version   Visualization version   GIF version

Theorem ceqsexvOLD 3525
Description: Obsolete version of ceqsexv 3524 as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2169. (Revised by Gino Giotto, 12-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ceqsexvOLD.1 𝐴 ∈ V
ceqsexvOLD.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexvOLD (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexvOLD
StepHypRef Expression
1 ceqsexvOLD.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
21biimpa 475 . . 3 ((𝑥 = 𝐴𝜑) → 𝜓)
32exlimiv 1931 . 2 (∃𝑥(𝑥 = 𝐴𝜑) → 𝜓)
41biimprcd 249 . . . 4 (𝜓 → (𝑥 = 𝐴𝜑))
54alrimiv 1928 . . 3 (𝜓 → ∀𝑥(𝑥 = 𝐴𝜑))
6 ceqsexvOLD.1 . . . 4 𝐴 ∈ V
76isseti 3488 . . 3 𝑥 𝑥 = 𝐴
8 exintr 1893 . . 3 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴𝜑)))
95, 7, 8mpisyl 21 . 2 (𝜓 → ∃𝑥(𝑥 = 𝐴𝜑))
103, 9impbii 208 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1537   = wceq 1539  wex 1779  wcel 2104  Vcvv 3472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-clel 2808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator