![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsexvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of ceqsexv 3524 as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2169. (Revised by Gino Giotto, 12-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ceqsexvOLD.1 | ⊢ 𝐴 ∈ V |
ceqsexvOLD.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsexvOLD | ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsexvOLD.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpa 475 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) → 𝜓) |
3 | 2 | exlimiv 1931 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → 𝜓) |
4 | 1 | biimprcd 249 | . . . 4 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
5 | 4 | alrimiv 1928 | . . 3 ⊢ (𝜓 → ∀𝑥(𝑥 = 𝐴 → 𝜑)) |
6 | ceqsexvOLD.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | 6 | isseti 3488 | . . 3 ⊢ ∃𝑥 𝑥 = 𝐴 |
8 | exintr 1893 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
9 | 5, 7, 8 | mpisyl 21 | . 2 ⊢ (𝜓 → ∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
10 | 3, 9 | impbii 208 | 1 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-clel 2808 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |