![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpisyl | Structured version Visualization version GIF version |
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
Ref | Expression |
---|---|
mpisyl.1 | ⊢ (𝜑 → 𝜓) |
mpisyl.2 | ⊢ 𝜒 |
mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpisyl | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 2, 3 | mpi 20 | . 2 ⊢ (𝜓 → 𝜃) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ceqsexOLD 3525 ceqsexvOLD 3527 moeq3 3709 fvsng 7178 fveqf1o 7301 fliftcnv 7308 fliftfun 7309 frxp3 8137 orderseqlem 8143 cnvct 9034 undomOLD 9060 pwdom 9129 php 9210 onomeneqOLD 9229 pwfilemOLD 9346 ordiso 9511 ordtypelem8 9520 wdompwdom 9573 unxpwdom 9584 harwdom 9586 inf0 9616 infeq5i 9631 cantnfcl 9662 cardiun 9977 infxpenlem 10008 dfac8b 10026 acnnum 10047 inffien 10058 dfac12lem2 10139 djudoml 10179 cdainflem 10182 djuinf 10183 infunabs 10202 infdju 10203 infdif 10204 infdif2 10205 infmap2 10213 fictb 10240 cofsmo 10264 fin23lem21 10334 hsmexlem1 10421 dmct 10519 mptct 10533 iundomg 10536 iunctb 10569 fpwwe2lem8 10633 canthnum 10644 winalim2 10691 rankcf 10772 tskuni 10778 npomex 10991 hashun2 14343 swrd2lsw 14903 2swrd2eqwrdeq 14904 limsupgord 15416 summolem2 15662 zsum 15664 prodmolem2 15879 zprod 15881 ltoddhalfle 16304 isinv 17707 invsym2 17710 invfun 17711 oppcsect2 17726 oppcinv 17727 efgcpbllemb 19623 frgpuplem 19640 gsumval3 19775 1stcfb 22949 1stcrestlem 22956 2ndcdisj2 22961 txdis1cn 23139 tx1stc 23154 tgphaus 23621 qustgplem 23625 tsmsxp 23659 xmeter 23939 bndth 24474 clmneg1 24598 ovolctb2 25009 ovoliunlem1 25019 i1fd 25198 dvgt0lem2 25520 taylf 25873 efcvx 25961 logccv 26171 loglesqrt 26266 0elold 27402 usgredg2v 28484 crctcshtrl 29077 frgr3vlem1 29526 strlem6 31509 mptctf 31942 omsmeas 33322 sibfof 33339 bnj97 33877 bnj553 33909 bnj966 33955 bnj1442 34060 subfaclefac 34167 erdsze2lem1 34194 erdsze2lem2 34195 snmlff 34320 satffunlem2lem2 34397 bj-ssbid2ALT 35540 phpreu 36472 ptrecube 36488 poimirlem3 36491 poimirlem32 36520 heicant 36523 dvhopellsm 39988 pell1qrgaplem 41611 dnwech 41790 oaun3lem1 42124 mnurndlem1 43040 rn1st 43978 stoweid 44779 dirkercncflem2 44820 fourierdlem36 44859 |
Copyright terms: Public domain | W3C validator |