![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpisyl | Structured version Visualization version GIF version |
Description: A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
Ref | Expression |
---|---|
mpisyl.1 | ⊢ (𝜑 → 𝜓) |
mpisyl.2 | ⊢ 𝜒 |
mpisyl.3 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
mpisyl | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpisyl.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mpisyl.2 | . . 3 ⊢ 𝜒 | |
3 | mpisyl.3 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 2, 3 | mpi 20 | . 2 ⊢ (𝜓 → 𝜃) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ceqsexOLD 3524 ceqsexvOLD 3526 moeq3 3708 fvsng 7180 fveqf1o 7303 fliftcnv 7310 fliftfun 7311 frxp3 8139 orderseqlem 8145 cnvct 9036 undomOLD 9062 pwdom 9131 php 9212 onomeneqOLD 9231 pwfilemOLD 9348 ordiso 9513 ordtypelem8 9522 wdompwdom 9575 unxpwdom 9586 harwdom 9588 inf0 9618 infeq5i 9633 cantnfcl 9664 cardiun 9979 infxpenlem 10010 dfac8b 10028 acnnum 10049 inffien 10060 dfac12lem2 10141 djudoml 10181 cdainflem 10184 djuinf 10185 infunabs 10204 infdju 10205 infdif 10206 infdif2 10207 infmap2 10215 fictb 10242 cofsmo 10266 fin23lem21 10336 hsmexlem1 10423 dmct 10521 mptct 10535 iundomg 10538 iunctb 10571 fpwwe2lem8 10635 canthnum 10646 winalim2 10693 rankcf 10774 tskuni 10780 npomex 10993 hashun2 14347 swrd2lsw 14907 2swrd2eqwrdeq 14908 limsupgord 15420 summolem2 15666 zsum 15668 prodmolem2 15883 zprod 15885 ltoddhalfle 16308 isinv 17711 invsym2 17714 invfun 17715 oppcsect2 17730 oppcinv 17731 efgcpbllemb 19664 frgpuplem 19681 gsumval3 19816 1stcfb 23169 1stcrestlem 23176 2ndcdisj2 23181 txdis1cn 23359 tx1stc 23374 tgphaus 23841 qustgplem 23845 tsmsxp 23879 xmeter 24159 bndth 24698 clmneg1 24822 ovolctb2 25233 ovoliunlem1 25243 i1fd 25422 dvgt0lem2 25744 taylf 26097 efcvx 26185 logccv 26395 loglesqrt 26490 0elold 27628 usgredg2v 28739 crctcshtrl 29332 frgr3vlem1 29781 strlem6 31764 mptctf 32197 omsmeas 33608 sibfof 33625 bnj97 34163 bnj553 34195 bnj966 34241 bnj1442 34346 subfaclefac 34453 erdsze2lem1 34480 erdsze2lem2 34481 snmlff 34606 satffunlem2lem2 34683 bj-ssbid2ALT 35843 phpreu 36775 ptrecube 36791 poimirlem3 36794 poimirlem32 36823 heicant 36826 dvhopellsm 40291 pell1qrgaplem 41913 dnwech 42092 oaun3lem1 42426 mnurndlem1 43342 rn1st 44277 stoweid 45078 dirkercncflem2 45119 fourierdlem36 45158 |
Copyright terms: Public domain | W3C validator |