MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexvOLDOLD Structured version   Visualization version   GIF version

Theorem ceqsexvOLDOLD 3532
Description: Obsolete version of ceqsexv 3530 as of 12-Oct-2024. (Contributed by NM, 2-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ceqsexvOLD.1 𝐴 ∈ V
ceqsexvOLD.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexvOLDOLD (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexvOLDOLD
StepHypRef Expression
1 nfv 1912 . 2 𝑥𝜓
2 ceqsexvOLD.1 . 2 𝐴 ∈ V
3 ceqsexvOLD.2 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3ceqsex 3528 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  Vcvv 3478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1777  df-nf 1781  df-clel 2814
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator