![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elisset 3420 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∃wex 1742 ∈ wcel 2048 Vcvv 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-cleq 2765 df-clel 2840 |
This theorem is referenced by: rexcom4b 3439 ceqsex 3455 vtoclf 3471 vtocl 3472 vtocl2OLD 3475 vtoclef 3496 euind 3623 eusv2nf 5143 zfpair 5172 axprALT 5173 opabn0 5285 isarep2 6270 dfoprab2 7025 rnoprab 7067 ov3 7121 omeu 8004 cflem 9458 genpass 10221 supaddc 11401 supadd 11402 supmul1 11403 supmullem2 11405 supmul 11406 ruclem13 15445 joindm 17461 meetdm 17475 bnj986 31834 dmscut 32733 bj-snsetex 33728 bj-restn0 33826 bj-restuni 33833 ac6s6f 34843 elintima 39306 funressnfv 42629 elpglem2 44121 |
Copyright terms: Public domain | W3C validator |