Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elissetv 2819 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 |
This theorem is referenced by: rexcom4b 3461 ceqsalv 3467 ceqsex 3478 ceqsexv 3479 vtoclf 3497 vtocl 3498 vtoclef 3523 euind 3659 eusv2nf 5318 zfpair 5344 axprALT 5345 opabn0 5466 isarep2 6523 dfoprab2 7333 rnoprab 7378 ov3 7435 omeu 8416 cflem 10002 genpass 10765 supaddc 11942 supadd 11943 supmul1 11944 supmullem2 11946 supmul 11947 ruclem13 15951 joindm 18093 meetdm 18107 bnj986 32935 satfdm 33331 fmla0 33344 fmlasuc0 33346 dmscut 34005 bj-snsetex 35153 bj-restn0 35261 bj-restuni 35268 ac6s6f 36331 elintima 41261 funressnfv 44537 elpglem2 46417 natlocalincr 46511 tworepnotupword 46521 |
Copyright terms: Public domain | W3C validator |