| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elissetv 2809 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: rexcom4b 3479 ceqsal 3485 ceqsalv 3487 ceqsexOLD 3497 ceqsexv2d 3499 vtocle 3521 vtoclOLD 3525 vtoclef 3529 vtoclfOLD 3531 euind 3695 eusv2nf 5350 zfpair 5376 axprALT 5377 opabn0 5513 isarep2 6608 dfoprab2 7447 rnoprab 7494 ov3 7552 omeu 8549 cflem 10198 cflemOLD 10199 genpass 10962 supaddc 12150 supadd 12151 supmul1 12152 supmullem2 12154 supmul 12155 ruclem13 16210 joindm 18334 meetdm 18348 dmscut 27723 bnj986 34945 satfdm 35356 fmla0 35369 fmlasuc0 35371 bj-snsetex 36951 bj-restn0 37078 bj-restuni 37085 ac6s6f 38167 tfsconcatlem 43325 elintima 43642 ormklocald 46872 natlocalincr 46874 tworepnotupword 46884 funressnfv 47044 elpglem2 49701 |
| Copyright terms: Public domain | W3C validator |