![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elissetv 2815 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-clel 2811 |
This theorem is referenced by: rexcom4b 3504 ceqsal 3510 ceqsalv 3512 ceqsexOLD 3525 ceqsexvOLD 3527 vtoclef 3547 vtoclfOLD 3549 vtocl 3550 euind 3721 eusv2nf 5394 zfpair 5420 axprALT 5421 opabn0 5554 isarep2 6640 dfoprab2 7467 rnoprab 7512 ov3 7570 omeu 8585 cflem 10241 genpass 11004 supaddc 12181 supadd 12182 supmul1 12183 supmullem2 12185 supmul 12186 ruclem13 16185 joindm 18328 meetdm 18342 dmscut 27313 bnj986 33997 satfdm 34391 fmla0 34404 fmlasuc0 34406 bj-snsetex 35892 bj-restn0 36019 bj-restuni 36026 ac6s6f 37089 tfsconcatlem 42134 elintima 42452 natlocalincr 45638 tworepnotupword 45648 funressnfv 45801 elpglem2 47805 |
Copyright terms: Public domain | W3C validator |