| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elissetv 2809 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: rexcom4b 3476 ceqsal 3482 ceqsalv 3484 ceqsexOLD 3494 ceqsexv2d 3496 vtocle 3518 vtoclOLD 3522 vtoclef 3526 vtoclfOLD 3528 euind 3692 eusv2nf 5345 zfpair 5371 axprALT 5372 opabn0 5508 isarep2 6590 dfoprab2 7427 rnoprab 7474 ov3 7532 omeu 8526 cflem 10174 cflemOLD 10175 genpass 10938 supaddc 12126 supadd 12127 supmul1 12128 supmullem2 12130 supmul 12131 ruclem13 16186 joindm 18310 meetdm 18324 dmscut 27699 bnj986 34918 satfdm 35329 fmla0 35342 fmlasuc0 35344 bj-snsetex 36924 bj-restn0 37051 bj-restuni 37058 ac6s6f 38140 tfsconcatlem 43298 elintima 43615 ormklocald 46845 natlocalincr 46847 tworepnotupword 46857 funressnfv 47017 elpglem2 49674 |
| Copyright terms: Public domain | W3C validator |