![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elissetv 2819 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-clel 2813 |
This theorem is referenced by: rexcom4b 3510 ceqsal 3516 ceqsalv 3518 ceqsexOLD 3528 ceqsexvOLD 3530 ceqsexv2d 3532 vtocle 3554 vtoclOLD 3558 vtoclef 3562 vtoclfOLD 3564 euind 3732 eusv2nf 5400 zfpair 5426 axprALT 5427 opabn0 5562 isarep2 6658 dfoprab2 7490 rnoprab 7536 ov3 7595 omeu 8621 cflem 10282 cflemOLD 10283 genpass 11046 supaddc 12232 supadd 12233 supmul1 12234 supmullem2 12236 supmul 12237 ruclem13 16274 joindm 18432 meetdm 18446 dmscut 27870 bnj986 34947 satfdm 35353 fmla0 35366 fmlasuc0 35368 bj-snsetex 36945 bj-restn0 37072 bj-restuni 37079 ac6s6f 38159 tfsconcatlem 43325 elintima 43642 natlocalincr 46829 tworepnotupword 46839 funressnfv 46992 elpglem2 48942 |
Copyright terms: Public domain | W3C validator |