| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elissetv 2815 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 |
| This theorem is referenced by: rexcom4b 3492 ceqsal 3498 ceqsalv 3500 ceqsexOLD 3510 ceqsexv2d 3512 vtocle 3534 vtoclOLD 3538 vtoclef 3542 vtoclfOLD 3544 euind 3707 eusv2nf 5365 zfpair 5391 axprALT 5392 opabn0 5528 isarep2 6628 dfoprab2 7465 rnoprab 7512 ov3 7570 omeu 8597 cflem 10259 cflemOLD 10260 genpass 11023 supaddc 12209 supadd 12210 supmul1 12211 supmullem2 12213 supmul 12214 ruclem13 16260 joindm 18385 meetdm 18399 dmscut 27775 bnj986 34986 satfdm 35391 fmla0 35404 fmlasuc0 35406 bj-snsetex 36981 bj-restn0 37108 bj-restuni 37115 ac6s6f 38197 tfsconcatlem 43360 elintima 43677 ormklocald 46903 natlocalincr 46905 tworepnotupword 46915 funressnfv 47072 elpglem2 49576 |
| Copyright terms: Public domain | W3C validator |