| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elissetv 2812 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 |
| This theorem is referenced by: rexcom4b 3468 ceqsal 3474 ceqsalv 3476 ceqsexv2d 3487 vtocle 3508 vtoclOLD 3512 vtoclef 3516 euind 3678 eusv2nf 5331 zfpair 5357 axprALT 5358 opabn0 5491 isarep2 6571 dfoprab2 7404 rnoprab 7451 ov3 7509 omeu 8500 cflem 10136 cflemOLD 10137 genpass 10900 supaddc 12089 supadd 12090 supmul1 12091 supmullem2 12093 supmul 12094 ruclem13 16151 joindm 18279 meetdm 18293 dmscut 27752 bnj986 34967 satfdm 35413 fmla0 35426 fmlasuc0 35428 bj-snsetex 37005 bj-restn0 37132 bj-restuni 37139 ac6s6f 38221 tfsconcatlem 43377 elintima 43694 ormklocald 46920 natlocalincr 46922 funressnfv 47082 elpglem2 49752 |
| Copyright terms: Public domain | W3C validator |