| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elissetv 2810 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2804 |
| This theorem is referenced by: rexcom4b 3482 ceqsal 3488 ceqsalv 3490 ceqsexOLD 3500 ceqsexv2d 3502 vtocle 3524 vtoclOLD 3528 vtoclef 3532 vtoclfOLD 3534 euind 3698 eusv2nf 5353 zfpair 5379 axprALT 5380 opabn0 5516 isarep2 6611 dfoprab2 7450 rnoprab 7497 ov3 7555 omeu 8552 cflem 10205 cflemOLD 10206 genpass 10969 supaddc 12157 supadd 12158 supmul1 12159 supmullem2 12161 supmul 12162 ruclem13 16217 joindm 18341 meetdm 18355 dmscut 27730 bnj986 34952 satfdm 35363 fmla0 35376 fmlasuc0 35378 bj-snsetex 36958 bj-restn0 37085 bj-restuni 37092 ac6s6f 38174 tfsconcatlem 43332 elintima 43649 ormklocald 46879 natlocalincr 46881 tworepnotupword 46891 funressnfv 47048 elpglem2 49705 |
| Copyright terms: Public domain | W3C validator |