| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version | ||
| Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
| Ref | Expression |
|---|---|
| isseti.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elissetv 2809 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 |
| This theorem is referenced by: rexcom4b 3468 ceqsal 3474 ceqsalv 3476 ceqsexOLD 3486 ceqsexv2d 3488 vtocle 3510 vtoclOLD 3514 vtoclef 3518 vtoclfOLD 3520 euind 3684 eusv2nf 5334 zfpair 5360 axprALT 5361 opabn0 5496 isarep2 6572 dfoprab2 7407 rnoprab 7454 ov3 7512 omeu 8503 cflem 10139 cflemOLD 10140 genpass 10903 supaddc 12092 supadd 12093 supmul1 12094 supmullem2 12096 supmul 12097 ruclem13 16151 joindm 18279 meetdm 18293 dmscut 27722 bnj986 34922 satfdm 35342 fmla0 35355 fmlasuc0 35357 bj-snsetex 36937 bj-restn0 37064 bj-restuni 37071 ac6s6f 38153 tfsconcatlem 43309 elintima 43626 ormklocald 46855 natlocalincr 46857 tworepnotupword 46867 funressnfv 47027 elpglem2 49697 |
| Copyright terms: Public domain | W3C validator |