MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isseti Structured version   Visualization version   GIF version

Theorem isseti 3462
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.)
Hypothesis
Ref Expression
isseti.1 𝐴 ∈ V
Assertion
Ref Expression
isseti 𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem isseti
StepHypRef Expression
1 isseti.1 . 2 𝐴 ∈ V
2 elissetv 2809 . 2 (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴)
31, 2ax-mp 5 1 𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-clel 2803
This theorem is referenced by:  rexcom4b  3476  ceqsal  3482  ceqsalv  3484  ceqsexOLD  3494  ceqsexv2d  3496  vtocle  3518  vtoclOLD  3522  vtoclef  3526  vtoclfOLD  3528  euind  3692  eusv2nf  5345  zfpair  5371  axprALT  5372  opabn0  5508  isarep2  6590  dfoprab2  7427  rnoprab  7474  ov3  7532  omeu  8526  cflem  10174  cflemOLD  10175  genpass  10938  supaddc  12126  supadd  12127  supmul1  12128  supmullem2  12130  supmul  12131  ruclem13  16186  joindm  18310  meetdm  18324  dmscut  27699  bnj986  34918  satfdm  35329  fmla0  35342  fmlasuc0  35344  bj-snsetex  36924  bj-restn0  37051  bj-restuni  37058  ac6s6f  38140  tfsconcatlem  43298  elintima  43615  ormklocald  46845  natlocalincr  46847  tworepnotupword  46857  funressnfv  47017  elpglem2  49674
  Copyright terms: Public domain W3C validator