Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elissetv 2819 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 |
This theorem is referenced by: rexcom4b 3451 ceqsalv 3457 ceqsex 3468 ceqsexv 3469 vtoclf 3487 vtocl 3488 vtoclef 3513 euind 3654 eusv2nf 5313 zfpair 5339 axprALT 5340 opabn0 5459 isarep2 6507 dfoprab2 7311 rnoprab 7356 ov3 7413 omeu 8378 cflem 9933 genpass 10696 supaddc 11872 supadd 11873 supmul1 11874 supmullem2 11876 supmul 11877 ruclem13 15879 joindm 18008 meetdm 18022 bnj986 32835 satfdm 33231 fmla0 33244 fmlasuc0 33246 dmscut 33932 bj-snsetex 35080 bj-restn0 35188 bj-restuni 35195 ac6s6f 36258 elintima 41150 funressnfv 44424 elpglem2 46303 |
Copyright terms: Public domain | W3C validator |