![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isseti | Structured version Visualization version GIF version |
Description: A way to say "𝐴 is a set" (inference form). (Contributed by NM, 24-Jun-1993.) Remove dependencies on axioms. (Revised by BJ, 13-Jul-2019.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elissetv 2825 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 |
This theorem is referenced by: rexcom4b 3521 ceqsal 3527 ceqsalv 3529 ceqsexOLD 3541 ceqsexvOLD 3543 ceqsexv2d 3545 vtocle 3567 vtoclOLD 3571 vtoclef 3575 vtoclfOLD 3577 euind 3746 eusv2nf 5413 zfpair 5439 axprALT 5440 opabn0 5572 isarep2 6669 dfoprab2 7508 rnoprab 7554 ov3 7613 omeu 8641 cflem 10314 cflemOLD 10315 genpass 11078 supaddc 12262 supadd 12263 supmul1 12264 supmullem2 12266 supmul 12267 ruclem13 16290 joindm 18445 meetdm 18459 dmscut 27874 bnj986 34931 satfdm 35337 fmla0 35350 fmlasuc0 35352 bj-snsetex 36929 bj-restn0 37056 bj-restuni 37063 ac6s6f 38133 tfsconcatlem 43298 elintima 43615 natlocalincr 46795 tworepnotupword 46805 funressnfv 46958 elpglem2 48804 |
Copyright terms: Public domain | W3C validator |