| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026.) |
| Ref | Expression |
|---|---|
| chneq1 | ⊢ ( < = 𝑅 → ( < Chain 𝐴) = (𝑅 Chain 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 5091 | . . . 4 ⊢ ( < = 𝑅 → ((𝑐‘(𝑥 − 1)) < (𝑐‘𝑥) ↔ (𝑐‘(𝑥 − 1))𝑅(𝑐‘𝑥))) | |
| 2 | 1 | ralbidv 3153 | . . 3 ⊢ ( < = 𝑅 → (∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐‘𝑥) ↔ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐‘𝑥))) |
| 3 | 2 | rabbidv 3400 | . 2 ⊢ ( < = 𝑅 → {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐‘𝑥)} = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐‘𝑥)}) |
| 4 | df-chn 18504 | . 2 ⊢ ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐‘𝑥)} | |
| 5 | df-chn 18504 | . 2 ⊢ (𝑅 Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐‘𝑥)} | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | 1 ⊢ ( < = 𝑅 → ( < Chain 𝐴) = (𝑅 Chain 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∀wral 3045 {crab 3393 ∖ cdif 3897 {csn 4574 class class class wbr 5089 dom cdm 5614 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 − cmin 11336 Word cword 14412 Chain cchn 18503 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3394 df-br 5090 df-chn 18504 |
| This theorem is referenced by: chneq12 18512 |
| Copyright terms: Public domain | W3C validator |