MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chneq1 Structured version   Visualization version   GIF version

Theorem chneq1 18524
Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026.)
Assertion
Ref Expression
chneq1 ( < = 𝑅 → ( < Chain 𝐴) = (𝑅 Chain 𝐴))

Proof of Theorem chneq1
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5095 . . . 4 ( < = 𝑅 → ((𝑐‘(𝑥 − 1)) < (𝑐𝑥) ↔ (𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)))
21ralbidv 3155 . . 3 ( < = 𝑅 → (∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐𝑥) ↔ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)))
32rabbidv 3402 . 2 ( < = 𝑅 → {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐𝑥)} = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)})
4 df-chn 18518 . 2 ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐𝑥)}
5 df-chn 18518 . 2 (𝑅 Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)}
63, 4, 53eqtr4g 2791 1 ( < = 𝑅 → ( < Chain 𝐴) = (𝑅 Chain 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3047  {crab 3395  cdif 3894  {csn 4575   class class class wbr 5093  dom cdm 5619  cfv 6487  (class class class)co 7352  0cc0 11012  1c1 11013  cmin 11350  Word cword 14426   Chain cchn 18517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-br 5094  df-chn 18518
This theorem is referenced by:  chneq12  18526
  Copyright terms: Public domain W3C validator