MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chneq1 Structured version   Visualization version   GIF version

Theorem chneq1 18510
Description: Equality theorem for chains. (Contributed by Ender Ting, 17-Jan-2026.)
Assertion
Ref Expression
chneq1 ( < = 𝑅 → ( < Chain 𝐴) = (𝑅 Chain 𝐴))

Proof of Theorem chneq1
Dummy variables 𝑥 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5091 . . . 4 ( < = 𝑅 → ((𝑐‘(𝑥 − 1)) < (𝑐𝑥) ↔ (𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)))
21ralbidv 3153 . . 3 ( < = 𝑅 → (∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐𝑥) ↔ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)))
32rabbidv 3400 . 2 ( < = 𝑅 → {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐𝑥)} = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)})
4 df-chn 18504 . 2 ( < Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1)) < (𝑐𝑥)}
5 df-chn 18504 . 2 (𝑅 Chain 𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑥 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑥 − 1))𝑅(𝑐𝑥)}
63, 4, 53eqtr4g 2790 1 ( < = 𝑅 → ( < Chain 𝐴) = (𝑅 Chain 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wral 3045  {crab 3393  cdif 3897  {csn 4574   class class class wbr 5089  dom cdm 5614  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999  cmin 11336  Word cword 14412   Chain cchn 18503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rab 3394  df-br 5090  df-chn 18504
This theorem is referenced by:  chneq12  18512
  Copyright terms: Public domain W3C validator