| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5093 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5093 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5093 |
| This theorem is referenced by: breqi 5098 breqd 5103 poeq1 5530 soeq1 5548 freq1 5586 fveq1 6821 foeqcnvco 7237 f1eqcocnv 7238 isoeq2 7255 isoeq3 7256 eqfunresadj 7297 brfvopab 7406 ofreq 7617 supeq3 9339 oieq1 9404 ttrcleq 9605 dcomex 10341 axdc2lem 10342 brdom3 10422 brdom7disj 10425 brdom6disj 10426 dfrtrclrec2 14965 relexpindlem 14970 rtrclind 14972 shftfval 14977 isprs 18202 isdrs 18207 ispos 18220 istos 18322 resspos 18335 efglem 19595 frgpuplem 19651 ordtval 23074 utop2nei 24136 utop3cls 24137 isucn2 24164 ucnima 24166 iducn 24168 ex-opab 30380 acycgr0v 35141 prclisacycgr 35144 satf 35346 cureq 37596 poimirlem31 37651 poimir 37653 cosseq 38423 elrefrels3 38516 elcnvrefrels3 38532 elsymrels3 38551 elsymrels5 38553 eltrrels3 38577 eleqvrels3 38590 brabsb2 38861 rfovfvd 43995 fsovrfovd 44002 relpeq2 44939 relpeq3 44940 sprsymrelf 47499 sprsymrelfo 47501 upwlkbprop 48142 |
| Copyright terms: Public domain | W3C validator |