| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2823 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5120 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5120 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 df-br 5120 |
| This theorem is referenced by: breqi 5125 breqd 5130 poeq1 5564 soeq1 5582 freq1 5621 fveq1 6875 foeqcnvco 7293 f1eqcocnv 7294 isoeq2 7311 isoeq3 7312 eqfunresadj 7353 brfvopab 7464 ofreq 7675 supeq3 9461 oieq1 9526 ttrcleq 9723 dcomex 10461 axdc2lem 10462 brdom3 10542 brdom7disj 10545 brdom6disj 10546 dfrtrclrec2 15077 relexpindlem 15082 rtrclind 15084 shftfval 15089 isprs 18308 isdrs 18313 ispos 18326 istos 18428 efglem 19697 frgpuplem 19753 ordtval 23127 utop2nei 24189 utop3cls 24190 isucn2 24217 ucnima 24219 iducn 24221 ex-opab 30413 resspos 32946 acycgr0v 35170 prclisacycgr 35173 satf 35375 cureq 37620 poimirlem31 37675 poimir 37677 cosseq 38444 elrefrels3 38537 elcnvrefrels3 38553 elsymrels3 38572 elsymrels5 38574 eltrrels3 38598 eleqvrels3 38611 brabsb2 38880 rfovfvd 44026 fsovrfovd 44033 relpeq2 44970 relpeq3 44971 sprsymrelf 47509 sprsymrelfo 47511 upwlkbprop 48113 |
| Copyright terms: Public domain | W3C validator |