Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5071 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
3 | df-br 5071 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
4 | 1, 2, 3 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-br 5071 |
This theorem is referenced by: breqi 5076 breqd 5081 poeq1 5497 soeq1 5515 freq1 5550 fveq1 6755 foeqcnvco 7152 f1eqcocnv 7153 f1eqcocnvOLD 7154 isoeq2 7169 isoeq3 7170 brfvopab 7310 ofreq 7515 supeq3 9138 oieq1 9201 dcomex 10134 axdc2lem 10135 brdom3 10215 brdom7disj 10218 brdom6disj 10219 dfrtrclrec2 14697 relexpindlem 14702 rtrclind 14704 shftfval 14709 isprs 17930 isdrs 17934 ispos 17947 istos 18051 efglem 19237 frgpuplem 19293 ordtval 22248 utop2nei 23310 utop3cls 23311 isucn2 23339 ucnima 23341 iducn 23343 ex-opab 28697 resspos 31146 acycgr0v 33010 prclisacycgr 33013 satf 33215 eqfunresadj 33641 ttrcleq 33695 cureq 35680 poimirlem31 35735 poimir 35737 cosseq 36476 elrefrels3 36563 elcnvrefrels3 36576 elsymrels3 36595 elsymrels5 36597 eltrrels3 36621 eleqvrels3 36633 brabsb2 36803 rfovfvd 41499 fsovrfovd 41506 sprsymrelf 44835 sprsymrelfo 44837 upwlkbprop 45188 |
Copyright terms: Public domain | W3C validator |