![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5167 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
3 | df-br 5167 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-br 5167 |
This theorem is referenced by: breqi 5172 breqd 5177 poeq1 5610 soeq1 5629 freq1 5667 fveq1 6919 foeqcnvco 7336 f1eqcocnv 7337 isoeq2 7354 isoeq3 7355 eqfunresadj 7396 brfvopab 7507 ofreq 7718 supeq3 9518 oieq1 9581 ttrcleq 9778 dcomex 10516 axdc2lem 10517 brdom3 10597 brdom7disj 10600 brdom6disj 10601 dfrtrclrec2 15107 relexpindlem 15112 rtrclind 15114 shftfval 15119 isprs 18367 isdrs 18371 ispos 18384 istos 18488 efglem 19758 frgpuplem 19814 ordtval 23218 utop2nei 24280 utop3cls 24281 isucn2 24309 ucnima 24311 iducn 24313 ex-opab 30464 resspos 32939 acycgr0v 35116 prclisacycgr 35119 satf 35321 cureq 37556 poimirlem31 37611 poimir 37613 cosseq 38382 elrefrels3 38475 elcnvrefrels3 38491 elsymrels3 38510 elsymrels5 38512 eltrrels3 38536 eleqvrels3 38549 brabsb2 38818 rfovfvd 43964 fsovrfovd 43971 sprsymrelf 47369 sprsymrelfo 47371 upwlkbprop 47861 |
Copyright terms: Public domain | W3C validator |