| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5103 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5103 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: breqi 5108 breqd 5113 poeq1 5542 soeq1 5560 freq1 5598 fveq1 6839 foeqcnvco 7257 f1eqcocnv 7258 isoeq2 7275 isoeq3 7276 eqfunresadj 7317 brfvopab 7426 ofreq 7637 supeq3 9376 oieq1 9441 ttrcleq 9638 dcomex 10376 axdc2lem 10377 brdom3 10457 brdom7disj 10460 brdom6disj 10461 dfrtrclrec2 15000 relexpindlem 15005 rtrclind 15007 shftfval 15012 isprs 18237 isdrs 18242 ispos 18255 istos 18357 resspos 18370 efglem 19630 frgpuplem 19686 ordtval 23109 utop2nei 24171 utop3cls 24172 isucn2 24199 ucnima 24201 iducn 24203 ex-opab 30411 acycgr0v 35128 prclisacycgr 35131 satf 35333 cureq 37583 poimirlem31 37638 poimir 37640 cosseq 38410 elrefrels3 38503 elcnvrefrels3 38519 elsymrels3 38538 elsymrels5 38540 eltrrels3 38564 eleqvrels3 38577 brabsb2 38848 rfovfvd 43984 fsovrfovd 43991 relpeq2 44928 relpeq3 44929 sprsymrelf 47489 sprsymrelfo 47491 upwlkbprop 48119 |
| Copyright terms: Public domain | W3C validator |