| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5111 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5111 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 df-br 5111 |
| This theorem is referenced by: breqi 5116 breqd 5121 poeq1 5552 soeq1 5570 freq1 5608 fveq1 6860 foeqcnvco 7278 f1eqcocnv 7279 isoeq2 7296 isoeq3 7297 eqfunresadj 7338 brfvopab 7449 ofreq 7660 supeq3 9407 oieq1 9472 ttrcleq 9669 dcomex 10407 axdc2lem 10408 brdom3 10488 brdom7disj 10491 brdom6disj 10492 dfrtrclrec2 15031 relexpindlem 15036 rtrclind 15038 shftfval 15043 isprs 18264 isdrs 18269 ispos 18282 istos 18384 efglem 19653 frgpuplem 19709 ordtval 23083 utop2nei 24145 utop3cls 24146 isucn2 24173 ucnima 24175 iducn 24177 ex-opab 30368 resspos 32899 acycgr0v 35142 prclisacycgr 35145 satf 35347 cureq 37597 poimirlem31 37652 poimir 37654 cosseq 38424 elrefrels3 38517 elcnvrefrels3 38533 elsymrels3 38552 elsymrels5 38554 eltrrels3 38578 eleqvrels3 38591 brabsb2 38862 rfovfvd 43998 fsovrfovd 44005 relpeq2 44942 relpeq3 44943 sprsymrelf 47500 sprsymrelfo 47502 upwlkbprop 48130 |
| Copyright terms: Public domain | W3C validator |