| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5090 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5090 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-br 5090 |
| This theorem is referenced by: breqi 5095 breqd 5100 poeq1 5525 soeq1 5543 freq1 5581 fveq1 6821 foeqcnvco 7234 f1eqcocnv 7235 isoeq2 7252 isoeq3 7253 eqfunresadj 7294 brfvopab 7403 ofreq 7614 supeq3 9333 oieq1 9398 ttrcleq 9599 dcomex 10338 axdc2lem 10339 brdom3 10419 brdom7disj 10422 brdom6disj 10423 dfrtrclrec2 14965 relexpindlem 14970 rtrclind 14972 shftfval 14977 isprs 18202 isdrs 18207 ispos 18220 istos 18322 resspos 18335 chneq1 18518 efglem 19628 frgpuplem 19684 ordtval 23104 utop2nei 24165 utop3cls 24166 isucn2 24193 ucnima 24195 iducn 24197 ex-opab 30412 acycgr0v 35192 prclisacycgr 35195 satf 35397 cureq 37635 poimirlem31 37690 poimir 37692 cosseq 38527 elrefrels3 38610 elcnvrefrels3 38626 elsymrels3 38649 elsymrels5 38651 eltrrels3 38675 eleqvrels3 38688 brabsb2 38960 rfovfvd 44094 fsovrfovd 44101 relpeq2 45037 relpeq3 45038 sprsymrelf 47594 sprsymrelfo 47596 upwlkbprop 48237 |
| Copyright terms: Public domain | W3C validator |