Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5075 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
3 | df-br 5075 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 〈cop 4568 class class class wbr 5074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 df-br 5075 |
This theorem is referenced by: breqi 5080 breqd 5085 poeq1 5502 soeq1 5520 freq1 5555 fveq1 6766 foeqcnvco 7165 f1eqcocnv 7166 f1eqcocnvOLD 7167 isoeq2 7182 isoeq3 7183 brfvopab 7323 ofreq 7528 supeq3 9196 oieq1 9259 ttrcleq 9455 dcomex 10191 axdc2lem 10192 brdom3 10272 brdom7disj 10275 brdom6disj 10276 dfrtrclrec2 14757 relexpindlem 14762 rtrclind 14764 shftfval 14769 isprs 18003 isdrs 18007 ispos 18020 istos 18124 efglem 19310 frgpuplem 19366 ordtval 22328 utop2nei 23390 utop3cls 23391 isucn2 23419 ucnima 23421 iducn 23423 ex-opab 28782 resspos 31230 acycgr0v 33096 prclisacycgr 33099 satf 33301 eqfunresadj 33721 cureq 35739 poimirlem31 35794 poimir 35796 cosseq 36535 elrefrels3 36622 elcnvrefrels3 36635 elsymrels3 36654 elsymrels5 36656 eltrrels3 36680 eleqvrels3 36692 brabsb2 36862 rfovfvd 41569 fsovrfovd 41576 sprsymrelf 44903 sprsymrelfo 44905 upwlkbprop 45256 |
Copyright terms: Public domain | W3C validator |