| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5103 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5103 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4591 class class class wbr 5102 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5103 |
| This theorem is referenced by: breqi 5108 breqd 5113 poeq1 5542 soeq1 5560 freq1 5598 fveq1 6839 foeqcnvco 7257 f1eqcocnv 7258 isoeq2 7275 isoeq3 7276 eqfunresadj 7317 brfvopab 7426 ofreq 7637 supeq3 9376 oieq1 9441 ttrcleq 9640 dcomex 10378 axdc2lem 10379 brdom3 10459 brdom7disj 10462 brdom6disj 10463 dfrtrclrec2 15001 relexpindlem 15006 rtrclind 15008 shftfval 15013 isprs 18238 isdrs 18243 ispos 18256 istos 18358 resspos 18371 efglem 19631 frgpuplem 19687 ordtval 23110 utop2nei 24172 utop3cls 24173 isucn2 24200 ucnima 24202 iducn 24204 ex-opab 30412 acycgr0v 35129 prclisacycgr 35132 satf 35334 cureq 37584 poimirlem31 37639 poimir 37641 cosseq 38411 elrefrels3 38504 elcnvrefrels3 38520 elsymrels3 38539 elsymrels5 38541 eltrrels3 38565 eleqvrels3 38578 brabsb2 38849 rfovfvd 43985 fsovrfovd 43992 relpeq2 44929 relpeq3 44930 sprsymrelf 47490 sprsymrelfo 47492 upwlkbprop 48120 |
| Copyright terms: Public domain | W3C validator |