Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
2 | df-br 5076 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
3 | df-br 5076 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2107 〈cop 4568 class class class wbr 5075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-clel 2817 df-br 5076 |
This theorem is referenced by: breqi 5081 breqd 5086 poeq1 5507 soeq1 5525 freq1 5560 fveq1 6782 foeqcnvco 7181 f1eqcocnv 7182 f1eqcocnvOLD 7183 isoeq2 7198 isoeq3 7199 brfvopab 7341 ofreq 7546 supeq3 9217 oieq1 9280 ttrcleq 9476 dcomex 10212 axdc2lem 10213 brdom3 10293 brdom7disj 10296 brdom6disj 10297 dfrtrclrec2 14778 relexpindlem 14783 rtrclind 14785 shftfval 14790 isprs 18024 isdrs 18028 ispos 18041 istos 18145 efglem 19331 frgpuplem 19387 ordtval 22349 utop2nei 23411 utop3cls 23412 isucn2 23440 ucnima 23442 iducn 23444 ex-opab 28805 resspos 31253 acycgr0v 33119 prclisacycgr 33122 satf 33324 eqfunresadj 33744 cureq 35762 poimirlem31 35817 poimir 35819 cosseq 36556 elrefrels3 36643 elcnvrefrels3 36656 elsymrels3 36675 elsymrels5 36677 eltrrels3 36701 eleqvrels3 36713 brabsb2 36883 rfovfvd 41617 fsovrfovd 41624 sprsymrelf 44958 sprsymrelfo 44960 upwlkbprop 45311 |
Copyright terms: Public domain | W3C validator |