| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > breq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
| Ref | Expression |
|---|---|
| breq | ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . 2 ⊢ (𝑅 = 𝑆 → (〈𝐴, 𝐵〉 ∈ 𝑅 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆)) | |
| 2 | df-br 5108 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 3 | df-br 5108 | . 2 ⊢ (𝐴𝑆𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑆) | |
| 4 | 1, 2, 3 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → (𝐴𝑅𝐵 ↔ 𝐴𝑆𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 df-br 5108 |
| This theorem is referenced by: breqi 5113 breqd 5118 poeq1 5549 soeq1 5567 freq1 5605 fveq1 6857 foeqcnvco 7275 f1eqcocnv 7276 isoeq2 7293 isoeq3 7294 eqfunresadj 7335 brfvopab 7446 ofreq 7657 supeq3 9400 oieq1 9465 ttrcleq 9662 dcomex 10400 axdc2lem 10401 brdom3 10481 brdom7disj 10484 brdom6disj 10485 dfrtrclrec2 15024 relexpindlem 15029 rtrclind 15031 shftfval 15036 isprs 18257 isdrs 18262 ispos 18275 istos 18377 efglem 19646 frgpuplem 19702 ordtval 23076 utop2nei 24138 utop3cls 24139 isucn2 24166 ucnima 24168 iducn 24170 ex-opab 30361 resspos 32892 acycgr0v 35135 prclisacycgr 35138 satf 35340 cureq 37590 poimirlem31 37645 poimir 37647 cosseq 38417 elrefrels3 38510 elcnvrefrels3 38526 elsymrels3 38545 elsymrels5 38547 eltrrels3 38571 eleqvrels3 38584 brabsb2 38855 rfovfvd 43991 fsovrfovd 43998 relpeq2 44935 relpeq3 44936 sprsymrelf 47496 sprsymrelfo 47498 upwlkbprop 48126 |
| Copyright terms: Public domain | W3C validator |