| Step | Hyp | Ref
| Expression |
| 1 | | df-chn 18504 |
. 2
⊢ ( < Chain
𝐴) = {𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛)} |
| 2 | | df-rab 3394 |
. . 3
⊢ {𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛)} = {𝑧 ∣ (𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛))} |
| 3 | | nfv 1915 |
. . . 4
⊢
Ⅎ𝑧𝜑 |
| 4 | | df-word 14413 |
. . . . . . 7
⊢ Word
𝐴 = {𝑧 ∣ ∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴} |
| 5 | | nfv 1915 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝜑 |
| 6 | | nfcvd 2893 |
. . . . . . . . 9
⊢ (𝜑 → Ⅎ𝑥ℕ0) |
| 7 | | df-f 6481 |
. . . . . . . . . 10
⊢ (𝑧:(0..^𝑛)⟶𝐴 ↔ (𝑧 Fn (0..^𝑛) ∧ ran 𝑧 ⊆ 𝐴)) |
| 8 | | df-fn 6480 |
. . . . . . . . . . . 12
⊢ (𝑧 Fn (0..^𝑛) ↔ (Fun 𝑧 ∧ dom 𝑧 = (0..^𝑛))) |
| 9 | | df-fun 6479 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝑧 ↔ (Rel 𝑧 ∧ (𝑧 ∘ ◡𝑧) ⊆ I )) |
| 10 | | df-rel 5621 |
. . . . . . . . . . . . . . . 16
⊢ (Rel
𝑧 ↔ 𝑧 ⊆ (V × V)) |
| 11 | | nfcv 2892 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛𝑧 |
| 12 | | nfcv 2892 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑛(V
× V) |
| 13 | 11, 12 | dfss3f 3924 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ⊆ (V × V) ↔
∀𝑛 ∈ 𝑧 𝑛 ∈ (V × V)) |
| 14 | | nfcv 2892 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝑧 |
| 15 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Ⅎ𝑥𝑧) |
| 16 | | nfcvd 2893 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Ⅎ𝑥(V × V)) |
| 17 | 16 | nfcrd 2886 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → Ⅎ𝑥 𝑛 ∈ (V × V)) |
| 18 | 5, 15, 17 | nfraldw 3275 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Ⅎ𝑥∀𝑛 ∈ 𝑧 𝑛 ∈ (V × V)) |
| 19 | 13, 18 | nfxfrd 1855 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → Ⅎ𝑥 𝑧 ⊆ (V × V)) |
| 20 | 10, 19 | nfxfrd 1855 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Ⅎ𝑥Rel 𝑧) |
| 21 | | nfvd 1916 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → Ⅎ𝑥(𝑧 ∘ ◡𝑧) ⊆ I ) |
| 22 | 20, 21 | nfand 1898 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Ⅎ𝑥(Rel 𝑧 ∧ (𝑧 ∘ ◡𝑧) ⊆ I )) |
| 23 | 9, 22 | nfxfrd 1855 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Ⅎ𝑥Fun 𝑧) |
| 24 | | nfvd 1916 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Ⅎ𝑥dom 𝑧 = (0..^𝑛)) |
| 25 | 23, 24 | nfand 1898 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ⅎ𝑥(Fun 𝑧 ∧ dom 𝑧 = (0..^𝑛))) |
| 26 | 8, 25 | nfxfrd 1855 |
. . . . . . . . . . 11
⊢ (𝜑 → Ⅎ𝑥 𝑧 Fn (0..^𝑛)) |
| 27 | | nfcv 2892 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛ran
𝑧 |
| 28 | | nfcv 2892 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑛𝐴 |
| 29 | 27, 28 | dfss3f 3924 |
. . . . . . . . . . . 12
⊢ (ran
𝑧 ⊆ 𝐴 ↔ ∀𝑛 ∈ ran 𝑧 𝑛 ∈ 𝐴) |
| 30 | | nfcvd 2893 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Ⅎ𝑥ran 𝑧) |
| 31 | | nfchnd.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Ⅎ𝑥𝐴) |
| 32 | 31 | nfcrd 2886 |
. . . . . . . . . . . . 13
⊢ (𝜑 → Ⅎ𝑥 𝑛 ∈ 𝐴) |
| 33 | 5, 30, 32 | nfraldw 3275 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ⅎ𝑥∀𝑛 ∈ ran 𝑧 𝑛 ∈ 𝐴) |
| 34 | 29, 33 | nfxfrd 1855 |
. . . . . . . . . . 11
⊢ (𝜑 → Ⅎ𝑥ran 𝑧 ⊆ 𝐴) |
| 35 | 26, 34 | nfand 1898 |
. . . . . . . . . 10
⊢ (𝜑 → Ⅎ𝑥(𝑧 Fn (0..^𝑛) ∧ ran 𝑧 ⊆ 𝐴)) |
| 36 | 7, 35 | nfxfrd 1855 |
. . . . . . . . 9
⊢ (𝜑 → Ⅎ𝑥 𝑧:(0..^𝑛)⟶𝐴) |
| 37 | 5, 6, 36 | nfrexdw 3276 |
. . . . . . . 8
⊢ (𝜑 → Ⅎ𝑥∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴) |
| 38 | 3, 37 | nfabdw 2914 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴}) |
| 39 | 4, 38 | nfcxfrd 2891 |
. . . . . 6
⊢ (𝜑 → Ⅎ𝑥Word 𝐴) |
| 40 | | nfcr 2882 |
. . . . . 6
⊢
(Ⅎ𝑥Word
𝐴 → Ⅎ𝑥 𝑧 ∈ Word 𝐴) |
| 41 | 39, 40 | syl 17 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑥 𝑧 ∈ Word 𝐴) |
| 42 | | nfcvd 2893 |
. . . . . 6
⊢ (𝜑 → Ⅎ𝑥(dom 𝑧 ∖ {0})) |
| 43 | | nfcvd 2893 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥(𝑧‘(𝑛 − 1))) |
| 44 | | nfchnd.1 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥 < ) |
| 45 | | nfcvd 2893 |
. . . . . . 7
⊢ (𝜑 → Ⅎ𝑥(𝑧‘𝑛)) |
| 46 | 43, 44, 45 | nfbrd 5135 |
. . . . . 6
⊢ (𝜑 → Ⅎ𝑥(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛)) |
| 47 | 5, 42, 46 | nfraldw 3275 |
. . . . 5
⊢ (𝜑 → Ⅎ𝑥∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛)) |
| 48 | 41, 47 | nfand 1898 |
. . . 4
⊢ (𝜑 → Ⅎ𝑥(𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛))) |
| 49 | 3, 48 | nfabdw 2914 |
. . 3
⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ (𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛))}) |
| 50 | 2, 49 | nfcxfrd 2891 |
. 2
⊢ (𝜑 → Ⅎ𝑥{𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧‘𝑛)}) |
| 51 | 1, 50 | nfcxfrd 2891 |
1
⊢ (𝜑 → Ⅎ𝑥( < Chain 𝐴)) |