MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfchnd Structured version   Visualization version   GIF version

Theorem nfchnd 18523
Description: Bound-variable hypothesis builder for chain collection constructor. (Contributed by Ender Ting, 20-Jan-2026.)
Hypotheses
Ref Expression
nfchnd.1 (𝜑𝑥 < )
nfchnd.2 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfchnd (𝜑𝑥( < Chain 𝐴))

Proof of Theorem nfchnd
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-chn 18518 . 2 ( < Chain 𝐴) = {𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)}
2 df-rab 3396 . . 3 {𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)} = {𝑧 ∣ (𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛))}
3 nfv 1915 . . . 4 𝑧𝜑
4 df-word 14427 . . . . . . 7 Word 𝐴 = {𝑧 ∣ ∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴}
5 nfv 1915 . . . . . . . . 9 𝑛𝜑
6 nfcvd 2895 . . . . . . . . 9 (𝜑𝑥0)
7 df-f 6491 . . . . . . . . . 10 (𝑧:(0..^𝑛)⟶𝐴 ↔ (𝑧 Fn (0..^𝑛) ∧ ran 𝑧𝐴))
8 df-fn 6490 . . . . . . . . . . . 12 (𝑧 Fn (0..^𝑛) ↔ (Fun 𝑧 ∧ dom 𝑧 = (0..^𝑛)))
9 df-fun 6489 . . . . . . . . . . . . . 14 (Fun 𝑧 ↔ (Rel 𝑧 ∧ (𝑧𝑧) ⊆ I ))
10 df-rel 5626 . . . . . . . . . . . . . . . 16 (Rel 𝑧𝑧 ⊆ (V × V))
11 nfcv 2894 . . . . . . . . . . . . . . . . . 18 𝑛𝑧
12 nfcv 2894 . . . . . . . . . . . . . . . . . 18 𝑛(V × V)
1311, 12dfss3f 3921 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (V × V) ↔ ∀𝑛𝑧 𝑛 ∈ (V × V))
14 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧
1514a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑥𝑧)
16 nfcvd 2895 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑥(V × V))
1716nfcrd 2888 . . . . . . . . . . . . . . . . . 18 (𝜑 → Ⅎ𝑥 𝑛 ∈ (V × V))
185, 15, 17nfraldw 3277 . . . . . . . . . . . . . . . . 17 (𝜑 → Ⅎ𝑥𝑛𝑧 𝑛 ∈ (V × V))
1913, 18nfxfrd 1855 . . . . . . . . . . . . . . . 16 (𝜑 → Ⅎ𝑥 𝑧 ⊆ (V × V))
2010, 19nfxfrd 1855 . . . . . . . . . . . . . . 15 (𝜑 → Ⅎ𝑥Rel 𝑧)
21 nfvd 1916 . . . . . . . . . . . . . . 15 (𝜑 → Ⅎ𝑥(𝑧𝑧) ⊆ I )
2220, 21nfand 1898 . . . . . . . . . . . . . 14 (𝜑 → Ⅎ𝑥(Rel 𝑧 ∧ (𝑧𝑧) ⊆ I ))
239, 22nfxfrd 1855 . . . . . . . . . . . . 13 (𝜑 → Ⅎ𝑥Fun 𝑧)
24 nfvd 1916 . . . . . . . . . . . . 13 (𝜑 → Ⅎ𝑥dom 𝑧 = (0..^𝑛))
2523, 24nfand 1898 . . . . . . . . . . . 12 (𝜑 → Ⅎ𝑥(Fun 𝑧 ∧ dom 𝑧 = (0..^𝑛)))
268, 25nfxfrd 1855 . . . . . . . . . . 11 (𝜑 → Ⅎ𝑥 𝑧 Fn (0..^𝑛))
27 nfcv 2894 . . . . . . . . . . . . 13 𝑛ran 𝑧
28 nfcv 2894 . . . . . . . . . . . . 13 𝑛𝐴
2927, 28dfss3f 3921 . . . . . . . . . . . 12 (ran 𝑧𝐴 ↔ ∀𝑛 ∈ ran 𝑧 𝑛𝐴)
30 nfcvd 2895 . . . . . . . . . . . . 13 (𝜑𝑥ran 𝑧)
31 nfchnd.2 . . . . . . . . . . . . . 14 (𝜑𝑥𝐴)
3231nfcrd 2888 . . . . . . . . . . . . 13 (𝜑 → Ⅎ𝑥 𝑛𝐴)
335, 30, 32nfraldw 3277 . . . . . . . . . . . 12 (𝜑 → Ⅎ𝑥𝑛 ∈ ran 𝑧 𝑛𝐴)
3429, 33nfxfrd 1855 . . . . . . . . . . 11 (𝜑 → Ⅎ𝑥ran 𝑧𝐴)
3526, 34nfand 1898 . . . . . . . . . 10 (𝜑 → Ⅎ𝑥(𝑧 Fn (0..^𝑛) ∧ ran 𝑧𝐴))
367, 35nfxfrd 1855 . . . . . . . . 9 (𝜑 → Ⅎ𝑥 𝑧:(0..^𝑛)⟶𝐴)
375, 6, 36nfrexdw 3278 . . . . . . . 8 (𝜑 → Ⅎ𝑥𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴)
383, 37nfabdw 2916 . . . . . . 7 (𝜑𝑥{𝑧 ∣ ∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴})
394, 38nfcxfrd 2893 . . . . . 6 (𝜑𝑥Word 𝐴)
40 nfcr 2884 . . . . . 6 (𝑥Word 𝐴 → Ⅎ𝑥 𝑧 ∈ Word 𝐴)
4139, 40syl 17 . . . . 5 (𝜑 → Ⅎ𝑥 𝑧 ∈ Word 𝐴)
42 nfcvd 2895 . . . . . 6 (𝜑𝑥(dom 𝑧 ∖ {0}))
43 nfcvd 2895 . . . . . . 7 (𝜑𝑥(𝑧‘(𝑛 − 1)))
44 nfchnd.1 . . . . . . 7 (𝜑𝑥 < )
45 nfcvd 2895 . . . . . . 7 (𝜑𝑥(𝑧𝑛))
4643, 44, 45nfbrd 5139 . . . . . 6 (𝜑 → Ⅎ𝑥(𝑧‘(𝑛 − 1)) < (𝑧𝑛))
475, 42, 46nfraldw 3277 . . . . 5 (𝜑 → Ⅎ𝑥𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛))
4841, 47nfand 1898 . . . 4 (𝜑 → Ⅎ𝑥(𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)))
493, 48nfabdw 2916 . . 3 (𝜑𝑥{𝑧 ∣ (𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛))})
502, 49nfcxfrd 2893 . 2 (𝜑𝑥{𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)})
511, 50nfcxfrd 2893 1 (𝜑𝑥( < Chain 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  {cab 2709  wnfc 2879  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cdif 3894  wss 3897  {csn 4575   class class class wbr 5093   I cid 5513   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  ccom 5623  Rel wrel 5624  Fun wfun 6481   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  0cc0 11012  1c1 11013  cmin 11350  0cn0 12387  ..^cfzo 13560  Word cword 14426   Chain cchn 18517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-rel 5626  df-fun 6489  df-fn 6490  df-f 6491  df-word 14427  df-chn 18518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator