MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfchnd Structured version   Visualization version   GIF version

Theorem nfchnd 18509
Description: Bound-variable hypothesis builder for chain collection constructor. (Contributed by Ender Ting, 20-Jan-2026.)
Hypotheses
Ref Expression
nfchnd.1 (𝜑𝑥 < )
nfchnd.2 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfchnd (𝜑𝑥( < Chain 𝐴))

Proof of Theorem nfchnd
Dummy variables 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-chn 18504 . 2 ( < Chain 𝐴) = {𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)}
2 df-rab 3394 . . 3 {𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)} = {𝑧 ∣ (𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛))}
3 nfv 1915 . . . 4 𝑧𝜑
4 df-word 14413 . . . . . . 7 Word 𝐴 = {𝑧 ∣ ∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴}
5 nfv 1915 . . . . . . . . 9 𝑛𝜑
6 nfcvd 2893 . . . . . . . . 9 (𝜑𝑥0)
7 df-f 6481 . . . . . . . . . 10 (𝑧:(0..^𝑛)⟶𝐴 ↔ (𝑧 Fn (0..^𝑛) ∧ ran 𝑧𝐴))
8 df-fn 6480 . . . . . . . . . . . 12 (𝑧 Fn (0..^𝑛) ↔ (Fun 𝑧 ∧ dom 𝑧 = (0..^𝑛)))
9 df-fun 6479 . . . . . . . . . . . . . 14 (Fun 𝑧 ↔ (Rel 𝑧 ∧ (𝑧𝑧) ⊆ I ))
10 df-rel 5621 . . . . . . . . . . . . . . . 16 (Rel 𝑧𝑧 ⊆ (V × V))
11 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑛𝑧
12 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑛(V × V)
1311, 12dfss3f 3924 . . . . . . . . . . . . . . . . 17 (𝑧 ⊆ (V × V) ↔ ∀𝑛𝑧 𝑛 ∈ (V × V))
14 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧
1514a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑𝑥𝑧)
16 nfcvd 2893 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑥(V × V))
1716nfcrd 2886 . . . . . . . . . . . . . . . . . 18 (𝜑 → Ⅎ𝑥 𝑛 ∈ (V × V))
185, 15, 17nfraldw 3275 . . . . . . . . . . . . . . . . 17 (𝜑 → Ⅎ𝑥𝑛𝑧 𝑛 ∈ (V × V))
1913, 18nfxfrd 1855 . . . . . . . . . . . . . . . 16 (𝜑 → Ⅎ𝑥 𝑧 ⊆ (V × V))
2010, 19nfxfrd 1855 . . . . . . . . . . . . . . 15 (𝜑 → Ⅎ𝑥Rel 𝑧)
21 nfvd 1916 . . . . . . . . . . . . . . 15 (𝜑 → Ⅎ𝑥(𝑧𝑧) ⊆ I )
2220, 21nfand 1898 . . . . . . . . . . . . . 14 (𝜑 → Ⅎ𝑥(Rel 𝑧 ∧ (𝑧𝑧) ⊆ I ))
239, 22nfxfrd 1855 . . . . . . . . . . . . 13 (𝜑 → Ⅎ𝑥Fun 𝑧)
24 nfvd 1916 . . . . . . . . . . . . 13 (𝜑 → Ⅎ𝑥dom 𝑧 = (0..^𝑛))
2523, 24nfand 1898 . . . . . . . . . . . 12 (𝜑 → Ⅎ𝑥(Fun 𝑧 ∧ dom 𝑧 = (0..^𝑛)))
268, 25nfxfrd 1855 . . . . . . . . . . 11 (𝜑 → Ⅎ𝑥 𝑧 Fn (0..^𝑛))
27 nfcv 2892 . . . . . . . . . . . . 13 𝑛ran 𝑧
28 nfcv 2892 . . . . . . . . . . . . 13 𝑛𝐴
2927, 28dfss3f 3924 . . . . . . . . . . . 12 (ran 𝑧𝐴 ↔ ∀𝑛 ∈ ran 𝑧 𝑛𝐴)
30 nfcvd 2893 . . . . . . . . . . . . 13 (𝜑𝑥ran 𝑧)
31 nfchnd.2 . . . . . . . . . . . . . 14 (𝜑𝑥𝐴)
3231nfcrd 2886 . . . . . . . . . . . . 13 (𝜑 → Ⅎ𝑥 𝑛𝐴)
335, 30, 32nfraldw 3275 . . . . . . . . . . . 12 (𝜑 → Ⅎ𝑥𝑛 ∈ ran 𝑧 𝑛𝐴)
3429, 33nfxfrd 1855 . . . . . . . . . . 11 (𝜑 → Ⅎ𝑥ran 𝑧𝐴)
3526, 34nfand 1898 . . . . . . . . . 10 (𝜑 → Ⅎ𝑥(𝑧 Fn (0..^𝑛) ∧ ran 𝑧𝐴))
367, 35nfxfrd 1855 . . . . . . . . 9 (𝜑 → Ⅎ𝑥 𝑧:(0..^𝑛)⟶𝐴)
375, 6, 36nfrexdw 3276 . . . . . . . 8 (𝜑 → Ⅎ𝑥𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴)
383, 37nfabdw 2914 . . . . . . 7 (𝜑𝑥{𝑧 ∣ ∃𝑛 ∈ ℕ0 𝑧:(0..^𝑛)⟶𝐴})
394, 38nfcxfrd 2891 . . . . . 6 (𝜑𝑥Word 𝐴)
40 nfcr 2882 . . . . . 6 (𝑥Word 𝐴 → Ⅎ𝑥 𝑧 ∈ Word 𝐴)
4139, 40syl 17 . . . . 5 (𝜑 → Ⅎ𝑥 𝑧 ∈ Word 𝐴)
42 nfcvd 2893 . . . . . 6 (𝜑𝑥(dom 𝑧 ∖ {0}))
43 nfcvd 2893 . . . . . . 7 (𝜑𝑥(𝑧‘(𝑛 − 1)))
44 nfchnd.1 . . . . . . 7 (𝜑𝑥 < )
45 nfcvd 2893 . . . . . . 7 (𝜑𝑥(𝑧𝑛))
4643, 44, 45nfbrd 5135 . . . . . 6 (𝜑 → Ⅎ𝑥(𝑧‘(𝑛 − 1)) < (𝑧𝑛))
475, 42, 46nfraldw 3275 . . . . 5 (𝜑 → Ⅎ𝑥𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛))
4841, 47nfand 1898 . . . 4 (𝜑 → Ⅎ𝑥(𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)))
493, 48nfabdw 2914 . . 3 (𝜑𝑥{𝑧 ∣ (𝑧 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛))})
502, 49nfcxfrd 2891 . 2 (𝜑𝑥{𝑧 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑧 ∖ {0})(𝑧‘(𝑛 − 1)) < (𝑧𝑛)})
511, 50nfcxfrd 2891 1 (𝜑𝑥( < Chain 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2110  {cab 2708  wnfc 2877  wral 3045  wrex 3054  {crab 3393  Vcvv 3434  cdif 3897  wss 3900  {csn 4574   class class class wbr 5089   I cid 5508   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  ccom 5618  Rel wrel 5619  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999  cmin 11336  0cn0 12373  ..^cfzo 13546  Word cword 14412   Chain cchn 18503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-rel 5621  df-fun 6479  df-fn 6480  df-f 6481  df-word 14413  df-chn 18504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator