MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intprOLD Structured version   Visualization version   GIF version

Theorem intprOLD 4988
Description: Obsolete version of intpr 4987 as of 1-Sep-2024. (Contributed by NM, 14-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
intpr.1 𝐴 ∈ V
intpr.2 𝐵 ∈ V
Assertion
Ref Expression
intprOLD {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem intprOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1872 . . . 4 (∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
2 vex 3477 . . . . . . . 8 𝑦 ∈ V
32elpr 4652 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43imbi1i 348 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦))
5 jaob 959 . . . . . 6 (((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 274 . . . . 5 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
76albii 1820 . . . 4 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
8 intpr.1 . . . . . 6 𝐴 ∈ V
98clel4 3654 . . . . 5 (𝑥𝐴 ↔ ∀𝑦(𝑦 = 𝐴𝑥𝑦))
10 intpr.2 . . . . . 6 𝐵 ∈ V
1110clel4 3654 . . . . 5 (𝑥𝐵 ↔ ∀𝑦(𝑦 = 𝐵𝑥𝑦))
129, 11anbi12i 626 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
131, 7, 123bitr4i 302 . . 3 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ (𝑥𝐴𝑥𝐵))
14 vex 3477 . . . 4 𝑥 ∈ V
1514elint 4957 . . 3 (𝑥 {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦))
16 elin 3965 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1713, 15, 163bitr4i 302 . 2 (𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵))
1817eqriv 2728 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  wal 1538   = wceq 1540  wcel 2105  Vcvv 3473  cin 3948  {cpr 4631   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3954  df-in 3956  df-sn 4630  df-pr 4632  df-int 4952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator