Step | Hyp | Ref
| Expression |
1 | | 19.26 1871 |
. . . 4
⊢
(∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
2 | | vex 3441 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
3 | 2 | elpr 4588 |
. . . . . . 7
⊢ (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴 ∨ 𝑦 = 𝐵)) |
4 | 3 | imbi1i 350 |
. . . . . 6
⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦)) |
5 | | jaob 960 |
. . . . . 6
⊢ (((𝑦 = 𝐴 ∨ 𝑦 = 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
6 | 4, 5 | bitri 275 |
. . . . 5
⊢ ((𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
7 | 6 | albii 1819 |
. . . 4
⊢
(∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
8 | | intpr.1 |
. . . . . 6
⊢ 𝐴 ∈ V |
9 | 8 | clel4 3599 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦)) |
10 | | intpr.2 |
. . . . . 6
⊢ 𝐵 ∈ V |
11 | 10 | clel4 3599 |
. . . . 5
⊢ (𝑥 ∈ 𝐵 ↔ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦)) |
12 | 9, 11 | anbi12i 628 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (∀𝑦(𝑦 = 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 = 𝐵 → 𝑥 ∈ 𝑦))) |
13 | 1, 7, 12 | 3bitr4i 303 |
. . 3
⊢
(∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
14 | | vex 3441 |
. . . 4
⊢ 𝑥 ∈ V |
15 | 14 | elint 4892 |
. . 3
⊢ (𝑥 ∈ ∩ {𝐴,
𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑦)) |
16 | | elin 3908 |
. . 3
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
17 | 13, 15, 16 | 3bitr4i 303 |
. 2
⊢ (𝑥 ∈ ∩ {𝐴,
𝐵} ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) |
18 | 17 | eqriv 2733 |
1
⊢ ∩ {𝐴,
𝐵} = (𝐴 ∩ 𝐵) |