MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intprOLD Structured version   Visualization version   GIF version

Theorem intprOLD 4919
Description: Obsolete version of intpr 4918 as of 1-Sep-2024. (Contributed by NM, 14-Oct-1999.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
intpr.1 𝐴 ∈ V
intpr.2 𝐵 ∈ V
Assertion
Ref Expression
intprOLD {𝐴, 𝐵} = (𝐴𝐵)

Proof of Theorem intprOLD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1876 . . . 4 (∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
2 vex 3434 . . . . . . . 8 𝑦 ∈ V
32elpr 4589 . . . . . . 7 (𝑦 ∈ {𝐴, 𝐵} ↔ (𝑦 = 𝐴𝑦 = 𝐵))
43imbi1i 349 . . . . . 6 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦))
5 jaob 958 . . . . . 6 (((𝑦 = 𝐴𝑦 = 𝐵) → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
64, 5bitri 274 . . . . 5 ((𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
76albii 1825 . . . 4 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ ∀𝑦((𝑦 = 𝐴𝑥𝑦) ∧ (𝑦 = 𝐵𝑥𝑦)))
8 intpr.1 . . . . . 6 𝐴 ∈ V
98clel4 3595 . . . . 5 (𝑥𝐴 ↔ ∀𝑦(𝑦 = 𝐴𝑥𝑦))
10 intpr.2 . . . . . 6 𝐵 ∈ V
1110clel4 3595 . . . . 5 (𝑥𝐵 ↔ ∀𝑦(𝑦 = 𝐵𝑥𝑦))
129, 11anbi12i 626 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ (∀𝑦(𝑦 = 𝐴𝑥𝑦) ∧ ∀𝑦(𝑦 = 𝐵𝑥𝑦)))
131, 7, 123bitr4i 302 . . 3 (∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦) ↔ (𝑥𝐴𝑥𝐵))
14 vex 3434 . . . 4 𝑥 ∈ V
1514elint 4890 . . 3 (𝑥 {𝐴, 𝐵} ↔ ∀𝑦(𝑦 ∈ {𝐴, 𝐵} → 𝑥𝑦))
16 elin 3907 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1713, 15, 163bitr4i 302 . 2 (𝑥 {𝐴, 𝐵} ↔ 𝑥 ∈ (𝐴𝐵))
1817eqriv 2736 1 {𝐴, 𝐵} = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  wal 1539   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890  {cpr 4568   cint 4884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-un 3896  df-in 3898  df-sn 4567  df-pr 4569  df-int 4885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator