Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clel4g | Structured version Visualization version GIF version |
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 2171. (Revised by BJ, 1-Sep-2024.) |
Ref | Expression |
---|---|
clel4g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐵) | |
2 | biimt 361 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐵 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵))) |
4 | 19.23v 1945 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵)) | |
5 | 3, 4 | bitr4di 289 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝐵))) |
6 | eleq2 2827 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
7 | 6 | bicomd 222 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝑥)) |
8 | 7 | pm5.74i 270 | . . 3 ⊢ ((𝑥 = 𝐵 → 𝐴 ∈ 𝐵) ↔ (𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
9 | 8 | albii 1822 | . 2 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
10 | 5, 9 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: clel4 3594 intprg 4912 |
Copyright terms: Public domain | W3C validator |