Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clel4g | Structured version Visualization version GIF version |
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 2173. (Revised by BJ, 1-Sep-2024.) |
Ref | Expression |
---|---|
clel4g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2820 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐵) | |
2 | biimt 360 | . . . 4 ⊢ (∃𝑥 𝑥 = 𝐵 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ (∃𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵))) |
4 | 19.23v 1946 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝐵) ↔ (∃𝑥 𝑥 = 𝐵 → 𝐴 ∈ 𝐵)) | |
5 | 3, 4 | bitr4di 288 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝐵))) |
6 | eleq2 2827 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵)) | |
7 | 6 | bicomd 222 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝑥)) |
8 | 7 | pm5.74i 270 | . . 3 ⊢ ((𝑥 = 𝐵 → 𝐴 ∈ 𝐵) ↔ (𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
9 | 8 | albii 1823 | . 2 ⊢ (∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝐵) ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) |
10 | 5, 9 | bitrdi 286 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: clel4 3587 intprg 4909 |
Copyright terms: Public domain | W3C validator |