MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clel4g Structured version   Visualization version   GIF version

Theorem clel4g 3586
Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993.) Strengthen from sethood hypothesis to sethood antecedent and avoid ax-12 2173. (Revised by BJ, 1-Sep-2024.)
Assertion
Ref Expression
clel4g (𝐵𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem clel4g
StepHypRef Expression
1 elisset 2820 . . . 4 (𝐵𝑉 → ∃𝑥 𝑥 = 𝐵)
2 biimt 360 . . . 4 (∃𝑥 𝑥 = 𝐵 → (𝐴𝐵 ↔ (∃𝑥 𝑥 = 𝐵𝐴𝐵)))
31, 2syl 17 . . 3 (𝐵𝑉 → (𝐴𝐵 ↔ (∃𝑥 𝑥 = 𝐵𝐴𝐵)))
4 19.23v 1946 . . 3 (∀𝑥(𝑥 = 𝐵𝐴𝐵) ↔ (∃𝑥 𝑥 = 𝐵𝐴𝐵))
53, 4bitr4di 288 . 2 (𝐵𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝐵)))
6 eleq2 2827 . . . . 5 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
76bicomd 222 . . . 4 (𝑥 = 𝐵 → (𝐴𝐵𝐴𝑥))
87pm5.74i 270 . . 3 ((𝑥 = 𝐵𝐴𝐵) ↔ (𝑥 = 𝐵𝐴𝑥))
98albii 1823 . 2 (∀𝑥(𝑥 = 𝐵𝐴𝐵) ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥))
105, 9bitrdi 286 1 (𝐵𝑉 → (𝐴𝐵 ↔ ∀𝑥(𝑥 = 𝐵𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1783  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817
This theorem is referenced by:  clel4  3587  intprg  4909
  Copyright terms: Public domain W3C validator