Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cleljustALT | Structured version Visualization version GIF version |
Description: Alternate proof of cleljust 2119. It is kept here and should not be modified because it is referenced on the Metamath Proof Explorer Home Page (mmset.html) as an example of how disjoint variable conditions are inherited by substitutions. (Contributed by NM, 28-Jan-2004.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cleljustALT | ⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1917 | . . 3 ⊢ (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦) | |
2 | elequ1 2117 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | equsexhv 2293 | . 2 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦) ↔ 𝑥 ∈ 𝑦) |
4 | 3 | bicomi 223 | 1 ⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-10 2141 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |