![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cleljustALT | Structured version Visualization version GIF version |
Description: Alternate proof of cleljust 2115. It is kept here and should not be modified because it is referenced on the Metamath Proof Explorer Home Page (mmset.html) as an example of how disjoint variable conditions are inherited by substitutions. (Contributed by NM, 28-Jan-2004.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cleljustALT | ⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . . 3 ⊢ (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦) | |
2 | elequ1 2113 | . . 3 ⊢ (𝑧 = 𝑥 → (𝑧 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦)) | |
3 | 1, 2 | equsexhv 2288 | . 2 ⊢ (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦) ↔ 𝑥 ∈ 𝑦) |
4 | 3 | bicomi 223 | 1 ⊢ (𝑥 ∈ 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-nf 1786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |