MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustALT Structured version   Visualization version   GIF version

Theorem cleljustALT 2329
Description: Alternate proof of cleljust 2115. It is kept here and should not be modified because it is referenced on the Metamath Proof Explorer Home Page (mmset.html) as an example of how disjoint variable conditions are inherited by substitutions. (Contributed by NM, 28-Jan-2004.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cleljustALT (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljustALT
StepHypRef Expression
1 ax-5 1953 . . 3 (𝑥𝑦 → ∀𝑧 𝑥𝑦)
2 elequ1 2114 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
31, 2equsexhv 2267 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
43bicomi 216 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wex 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-10 2135  ax-12 2163
This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1824  df-nf 1828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator