MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustALT Structured version   Visualization version   GIF version

Theorem cleljustALT 2359
Description: Alternate proof of cleljust 2113. It is kept here and should not be modified because it is referenced on the Metamath Proof Explorer Home Page (mmset.html) as an example of how disjoint variable conditions are inherited by substitutions. (Contributed by NM, 28-Jan-2004.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cleljustALT (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljustALT
StepHypRef Expression
1 ax-5 1911 . . 3 (𝑥𝑦 → ∀𝑧 𝑥𝑦)
2 elequ1 2111 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
31, 2equsexhv 2286 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
43bicomi 223 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-10 2135  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator