Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsexhv | Structured version Visualization version GIF version |
Description: An equivalence related to implicit substitution. Version of equsexh 2432 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
equsalhw.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
equsalhw.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexhv | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsalhw.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | 1 | nf5i 2147 | . 2 ⊢ Ⅎ𝑥𝜓 |
3 | equsalhw.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | equsexv 2266 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 |
This theorem is referenced by: cleljustALT 2371 |
Copyright terms: Public domain | W3C validator |