MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexhv Structured version   Visualization version   GIF version

Theorem equsexhv 2296
Description: An equivalence related to implicit substitution. Version of equsexh 2432 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
equsalhw.1 (𝜓 → ∀𝑥𝜓)
equsalhw.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexhv (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem equsexhv
StepHypRef Expression
1 equsalhw.1 . . 3 (𝜓 → ∀𝑥𝜓)
21nf5i 2147 . 2 𝑥𝜓
3 equsalhw.2 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3equsexv 2266 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2142  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-nf 1786
This theorem is referenced by:  cleljustALT  2371
  Copyright terms: Public domain W3C validator