MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustALT2 Structured version   Visualization version   GIF version

Theorem cleljustALT2 2366
Description: Alternate proof of cleljust 2115. Compared with cleljustALT 2365, it uses nfv 1912 followed by equsexv 2266 instead of ax-5 1908 followed by equsexhv 2291, so it uses the idiom 𝑥𝜑 instead of 𝜑 → ∀𝑥𝜑 to express nonfreeness. This style is generally preferred for later theorems. (Contributed by NM, 28-Jan-2004.) (Revised by Mario Carneiro, 21-Dec-2016.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cleljustALT2 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljustALT2
StepHypRef Expression
1 nfv 1912 . . 3 𝑧 𝑥𝑦
2 elequ1 2113 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
31, 2equsexv 2266 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
43bicomi 224 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator