Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleljustALT2 Structured version   Visualization version   GIF version

Theorem cleljustALT2 2387
 Description: Alternate proof of cleljust 2174. Compared with cleljustALT 2386, it uses nfv 2015 followed by equsexv 2301 instead of ax-5 2011 followed by equsexhv 2326, so it uses the idiom Ⅎ𝑥𝜑 instead of 𝜑 → ∀𝑥𝜑 to express non-freeness. This style is generally preferred for later theorems. (Contributed by NM, 28-Jan-2004.) (Revised by Mario Carneiro, 21-Dec-2016.) (Revised by BJ, 29-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cleljustALT2 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧

Proof of Theorem cleljustALT2
StepHypRef Expression
1 nfv 2015 . . 3 𝑧 𝑥𝑦
2 elequ1 2173 . . 3 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
31, 2equsexv 2301 . 2 (∃𝑧(𝑧 = 𝑥𝑧𝑦) ↔ 𝑥𝑦)
43bicomi 216 1 (𝑥𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧𝑦))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∧ wa 386  ∃wex 1880 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-12 2222 This theorem depends on definitions:  df-bi 199  df-an 387  df-ex 1881  df-nf 1885 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator