| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvsbvf | Structured version Visualization version GIF version | ||
| Description: Change the bound variable (i.e. the substituted one) in wff's linked by implicit substitution. The proof was part of a former cbvabw 2813 version. (Contributed by GG and WL, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| cbvsbvf.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvsbvf.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvsbvf.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvsbvf | ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 = 𝑤 | |
| 2 | cbvsbvf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 = 𝑤 → 𝜑) |
| 4 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 = 𝑤 | |
| 5 | cbvsbvf.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfim 1896 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 = 𝑤 → 𝜓) |
| 7 | equequ1 2024 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑤 ↔ 𝑦 = 𝑤)) | |
| 8 | cbvsbvf.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 = 𝑤 → 𝜑) ↔ (𝑦 = 𝑤 → 𝜓))) |
| 10 | 3, 6, 9 | cbvalv1 2343 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑤 → 𝜑) ↔ ∀𝑦(𝑦 = 𝑤 → 𝜓)) |
| 11 | 10 | imbi2i 336 | . . 3 ⊢ ((𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) ↔ (𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓))) |
| 12 | 11 | albii 1819 | . 2 ⊢ (∀𝑤(𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤 → 𝜑)) ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓))) |
| 13 | df-sb 2065 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑥(𝑥 = 𝑤 → 𝜑))) | |
| 14 | df-sb 2065 | . 2 ⊢ ([𝑧 / 𝑦]𝜓 ↔ ∀𝑤(𝑤 = 𝑧 → ∀𝑦(𝑦 = 𝑤 → 𝜓))) | |
| 15 | 12, 13, 14 | 3bitr4i 303 | 1 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: cbvabw 2813 |
| Copyright terms: Public domain | W3C validator |