Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbeq12 Structured version   Visualization version   GIF version

Theorem csbeq12 36243
Description: Equality deduction for substitution in class. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Assertion
Ref Expression
csbeq12 ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → 𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐷)

Proof of Theorem csbeq12
StepHypRef Expression
1 csbeq2 3833 . 2 (∀𝑥 𝐶 = 𝐷𝐴 / 𝑥𝐶 = 𝐴 / 𝑥𝐷)
2 csbeq1 3831 . 2 (𝐴 = 𝐵𝐴 / 𝑥𝐷 = 𝐵 / 𝑥𝐷)
31, 2sylan9eqr 2801 1 ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → 𝐴 / 𝑥𝐶 = 𝐵 / 𝑥𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  csb 3828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-sbc 3712  df-csb 3829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator