![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbeq12 | Structured version Visualization version GIF version |
Description: Equality deduction for substitution in class. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
csbeq12 | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2 3893 | . 2 ⊢ (∀𝑥 𝐶 = 𝐷 → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐷) | |
2 | csbeq1 3891 | . 2 ⊢ (𝐴 = 𝐵 → ⦋𝐴 / 𝑥⦌𝐷 = ⦋𝐵 / 𝑥⦌𝐷) | |
3 | 1, 2 | sylan9eqr 2788 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 ⦋csb 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-sbc 3773 df-csb 3889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |