|   | Mathbox for Giovanni Mascellani | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbeqi | Structured version Visualization version GIF version | ||
| Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.) | 
| Ref | Expression | 
|---|---|
| sbeqi | ⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbbi 2073 | . 2 ⊢ (∀𝑧(𝜑 ↔ 𝜓) → ([𝑥 / 𝑧]𝜑 ↔ [𝑥 / 𝑧]𝜓)) | |
| 2 | sbequ 2083 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜓 ↔ [𝑦 / 𝑧]𝜓)) | |
| 3 | 1, 2 | sylan9bbr 510 | 1 ⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |