Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabeq12f Structured version   Visualization version   GIF version

Theorem rabeq12f 38158
Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Hypotheses
Ref Expression
rabeq12f.1 𝑥𝐴
rabeq12f.2 𝑥𝐵
Assertion
Ref Expression
rabeq12f ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → {𝑥𝐴𝜑} = {𝑥𝐵𝜓})

Proof of Theorem rabeq12f
StepHypRef Expression
1 rabbi 3468 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ {𝑥𝐴𝜑} = {𝑥𝐴𝜓})
21biimpi 216 . 2 (∀𝑥𝐴 (𝜑𝜓) → {𝑥𝐴𝜑} = {𝑥𝐴𝜓})
3 rabeq12f.1 . . 3 𝑥𝐴
4 rabeq12f.2 . . 3 𝑥𝐵
53, 4rabeqf 3473 . 2 (𝐴 = 𝐵 → {𝑥𝐴𝜓} = {𝑥𝐵𝜓})
62, 5sylan9eqr 2799 1 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) → {𝑥𝐴𝜑} = {𝑥𝐵𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wnfc 2890  wral 3061  {crab 3436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rab 3437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator