Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeq12f | Structured version Visualization version GIF version |
Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
Ref | Expression |
---|---|
rabeq12f.1 | ⊢ Ⅎ𝑥𝐴 |
rabeq12f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
rabeq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbi 3309 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓}) | |
2 | 1 | biimpi 215 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
3 | rabeq12f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
4 | rabeq12f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
5 | 3, 4 | rabeqf 3405 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
6 | 2, 5 | sylan9eqr 2801 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnfc 2886 ∀wral 3063 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |