| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabeq12f | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| rabeq12f.1 | ⊢ Ⅎ𝑥𝐴 |
| rabeq12f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| rabeq12f | ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbi 3425 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) ↔ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓}) | |
| 2 | 1 | biimpi 216 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 3 | rabeq12f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 4 | rabeq12f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 3, 4 | rabeqf 3429 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| 6 | 2, 5 | sylan9eqr 2788 | 1 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnfc 2879 ∀wral 3047 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |