| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2 | Structured version Visualization version GIF version | ||
| Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| csbeq2 | ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2830 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | |
| 2 | 1 | alimi 1811 | . . . 4 ⊢ (∀𝑥 𝐵 = 𝐶 → ∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | sbcbi2 3848 | . . . 4 ⊢ (∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 𝐵 = 𝐶 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 5 | 4 | abbidv 2808 | . 2 ⊢ (∀𝑥 𝐵 = 𝐶 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 6 | df-csb 3900 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 7 | df-csb 3900 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2802 | 1 ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 [wsbc 3788 ⦋csb 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-sbc 3789 df-csb 3900 |
| This theorem is referenced by: sumeq2w 15728 prodeq2w 15946 itgeq12i 36207 csbeq12 38165 csbsngVD 44913 csbxpgVD 44914 csbresgVD 44915 csbrngVD 44916 csbima12gALTVD 44917 csbfv12gALTVD 44919 |
| Copyright terms: Public domain | W3C validator |