| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbeq2 | Structured version Visualization version GIF version | ||
| Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
| Ref | Expression |
|---|---|
| csbeq2 | ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | |
| 2 | 1 | alimi 1812 | . . . 4 ⊢ (∀𝑥 𝐵 = 𝐶 → ∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 3 | sbcbi2 3798 | . . . 4 ⊢ (∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 𝐵 = 𝐶 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
| 5 | 4 | abbidv 2796 | . 2 ⊢ (∀𝑥 𝐵 = 𝐶 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
| 6 | df-csb 3849 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
| 7 | df-csb 3849 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
| 8 | 5, 6, 7 | 3eqtr4g 2790 | 1 ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2110 {cab 2708 [wsbc 3739 ⦋csb 3848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3740 df-csb 3849 |
| This theorem is referenced by: sumeq2w 15591 prodeq2w 15809 itgeq12i 36219 csbeq12 38177 csbsngVD 44904 csbxpgVD 44905 csbresgVD 44906 csbrngVD 44907 csbima12gALTVD 44908 csbfv12gALTVD 44910 |
| Copyright terms: Public domain | W3C validator |