Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbeq2 | Structured version Visualization version GIF version |
Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
Ref | Expression |
---|---|
csbeq2 | ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . . . 5 ⊢ (𝐵 = 𝐶 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) | |
2 | 1 | alimi 1814 | . . . 4 ⊢ (∀𝑥 𝐵 = 𝐶 → ∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
3 | sbcbi2 3778 | . . . 4 ⊢ (∀𝑥(𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 𝐵 = 𝐶 → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ [𝐴 / 𝑥]𝑦 ∈ 𝐶)) |
5 | 4 | abbidv 2807 | . 2 ⊢ (∀𝑥 𝐵 = 𝐶 → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶}) |
6 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
7 | df-csb 3833 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐶} | |
8 | 5, 6, 7 | 3eqtr4g 2803 | 1 ⊢ (∀𝑥 𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 [wsbc 3716 ⦋csb 3832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 df-csb 3833 |
This theorem is referenced by: sumeq2w 15404 prodeq2w 15622 csbeq12 36316 csbsngVD 42513 csbxpgVD 42514 csbresgVD 42515 csbrngVD 42516 csbima12gALTVD 42517 csbfv12gALTVD 42519 |
Copyright terms: Public domain | W3C validator |