| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3744, to prevent ambiguity. Theorem sbcel1g 4369 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4362). Theorem sbccsb 4389 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | csb 3853 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wsbc 3744 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2707 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: csb2 3855 csbeq1 3856 csbeq2 3858 csbeq2d 3859 csbeq2dv 3860 cbvcsbw 3863 cbvcsb 3864 cbvcsbv 3865 csbid 3866 csbcow 3868 csbco 3869 csbtt 3870 csbconstg 3872 csbgfi 3873 nfcsb1d 3875 nfcsbd 3878 nfcsbw 3879 csbie 3888 csbied 3889 csbie2g 3893 cbvralcsf 3895 cbvreucsf 3897 cbvrabcsf 3898 csbprc 4362 sbcel12 4364 sbceqg 4365 csbnestgfw 4375 csbnestgf 4380 csbvarg 4387 csbexg 5252 cbvcsbvw2 36207 cbvcsbdavw 36235 cbvcsbdavw2 36236 bj-csbsnlem 36879 bj-csbprc 36886 csbcom2fi 38110 |
| Copyright terms: Public domain | W3C validator |