![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3804, to prevent ambiguity. Theorem sbcel1g 4439 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4432). Theorem sbccsb 4459 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3921 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1536 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 3804 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2717 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1537 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: csb2 3923 csbeq1 3924 csbeq2 3926 csbeq2d 3927 csbeq2dv 3928 cbvcsbw 3931 cbvcsb 3932 cbvcsbv 3933 csbid 3934 csbcow 3936 csbco 3937 csbtt 3938 csbconstg 3940 csbgfi 3942 nfcsb1d 3944 nfcsbd 3947 nfcsbw 3948 csbie 3957 csbied 3959 csbie2g 3964 cbvralcsf 3966 cbvreucsf 3968 cbvrabcsf 3969 csbprc 4432 sbcel12 4434 sbceqg 4435 csbnestgfw 4445 csbnestgf 4450 csbvarg 4457 csbexg 5328 cbvcsbvw2 36197 cbvcsbdavw 36225 cbvcsbdavw2 36226 bj-csbsnlem 36869 bj-csbprc 36876 csbcom2fi 38088 |
Copyright terms: Public domain | W3C validator |