| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3736, to prevent ambiguity. Theorem sbcel1g 4363 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4356). Theorem sbccsb 4383 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | csb 3845 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1540 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2111 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wsbc 3736 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2709 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1541 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: csb2 3847 csbeq1 3848 csbeq2 3850 csbeq2d 3851 csbeq2dv 3852 cbvcsbw 3855 cbvcsb 3856 cbvcsbv 3857 csbid 3858 csbcow 3860 csbco 3861 csbtt 3862 csbconstg 3864 csbgfi 3865 nfcsb1d 3867 nfcsbd 3870 nfcsbw 3871 csbie 3880 csbied 3881 csbie2g 3885 cbvralcsf 3887 cbvreucsf 3889 cbvrabcsf 3890 csbprc 4356 sbcel12 4358 sbceqg 4359 csbnestgfw 4369 csbnestgf 4374 csbvarg 4381 csbexg 5246 cbvcsbvw2 36273 cbvcsbdavw 36301 cbvcsbdavw2 36302 bj-csbsnlem 36945 bj-csbprc 36952 csbcom2fi 38176 |
| Copyright terms: Public domain | W3C validator |