| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3765, to prevent ambiguity. Theorem sbcel1g 4391 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4384). Theorem sbccsb 4411 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | csb 3874 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2108 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wsbc 3765 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2713 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: csb2 3876 csbeq1 3877 csbeq2 3879 csbeq2d 3880 csbeq2dv 3881 cbvcsbw 3884 cbvcsb 3885 cbvcsbv 3886 csbid 3887 csbcow 3889 csbco 3890 csbtt 3891 csbconstg 3893 csbgfi 3894 nfcsb1d 3896 nfcsbd 3899 nfcsbw 3900 csbie 3909 csbied 3910 csbie2g 3914 cbvralcsf 3916 cbvreucsf 3918 cbvrabcsf 3919 csbprc 4384 sbcel12 4386 sbceqg 4387 csbnestgfw 4397 csbnestgf 4402 csbvarg 4409 csbexg 5280 cbvcsbvw2 36195 cbvcsbdavw 36223 cbvcsbdavw2 36224 bj-csbsnlem 36867 bj-csbprc 36874 csbcom2fi 38098 |
| Copyright terms: Public domain | W3C validator |