Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3708, to prevent ambiguity. Theorem sbcel1g 4342 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4335). Theorem sbccsb 4362 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3825 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1542 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2111 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 3708 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2715 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1543 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: csb2 3827 csbeq1 3828 csbeq2 3830 csbeq2d 3831 cbvcsbw 3835 cbvcsb 3836 csbid 3838 csbcow 3840 csbco 3841 csbtt 3842 csbconstg 3844 csbgfi 3846 nfcsb1d 3848 nfcsbd 3851 nfcsbw 3852 csbie 3861 csbied 3863 csbie2g 3868 cbvralcsf 3870 cbvreucsf 3872 cbvrabcsf 3873 csbprc 4335 sbcel12 4337 sbceqg 4338 csbnestgfw 4348 csbnestgf 4353 csbvarg 4360 csbexg 5217 bj-csbsnlem 34851 bj-csbprc 34858 csbcom2fi 36049 |
Copyright terms: Public domain | W3C validator |