| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version | ||
| Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3753, to prevent ambiguity. Theorem sbcel1g 4379 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4372). Theorem sbccsb 4399 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
| Ref | Expression |
|---|---|
| df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vx | . . 3 setvar 𝑥 | |
| 2 | cA | . . 3 class 𝐴 | |
| 3 | cB | . . 3 class 𝐵 | |
| 4 | 1, 2, 3 | csb 3862 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
| 5 | vy | . . . . . 6 setvar 𝑦 | |
| 6 | 5 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | 6, 3 | wcel 2109 | . . . 4 wff 𝑦 ∈ 𝐵 |
| 8 | 7, 1, 2 | wsbc 3753 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
| 9 | 8, 5 | cab 2707 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| 10 | 4, 9 | wceq 1540 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
| Colors of variables: wff setvar class |
| This definition is referenced by: csb2 3864 csbeq1 3865 csbeq2 3867 csbeq2d 3868 csbeq2dv 3869 cbvcsbw 3872 cbvcsb 3873 cbvcsbv 3874 csbid 3875 csbcow 3877 csbco 3878 csbtt 3879 csbconstg 3881 csbgfi 3882 nfcsb1d 3884 nfcsbd 3887 nfcsbw 3888 csbie 3897 csbied 3898 csbie2g 3902 cbvralcsf 3904 cbvreucsf 3906 cbvrabcsf 3907 csbprc 4372 sbcel12 4374 sbceqg 4375 csbnestgfw 4385 csbnestgf 4390 csbvarg 4397 csbexg 5265 cbvcsbvw2 36219 cbvcsbdavw 36247 cbvcsbdavw2 36248 bj-csbsnlem 36891 bj-csbprc 36898 csbcom2fi 38122 |
| Copyright terms: Public domain | W3C validator |