MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-csb Structured version   Visualization version   GIF version

Definition df-csb 3826
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3708, to prevent ambiguity. Theorem sbcel1g 4342 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4335). Theorem sbccsb 4362 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
df-csb 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-csb
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3csb 3825 . 2 class 𝐴 / 𝑥𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1542 . . . . 5 class 𝑦
76, 3wcel 2111 . . . 4 wff 𝑦𝐵
87, 1, 2wsbc 3708 . . 3 wff [𝐴 / 𝑥]𝑦𝐵
98, 5cab 2715 . 2 class {𝑦[𝐴 / 𝑥]𝑦𝐵}
104, 9wceq 1543 1 wff 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
Colors of variables: wff setvar class
This definition is referenced by:  csb2  3827  csbeq1  3828  csbeq2  3830  csbeq2d  3831  cbvcsbw  3835  cbvcsb  3836  csbid  3838  csbcow  3840  csbco  3841  csbtt  3842  csbconstg  3844  csbgfi  3846  nfcsb1d  3848  nfcsbd  3851  nfcsbw  3852  csbie  3861  csbied  3863  csbie2g  3868  cbvralcsf  3870  cbvreucsf  3872  cbvrabcsf  3873  csbprc  4335  sbcel12  4337  sbceqg  4338  csbnestgfw  4348  csbnestgf  4353  csbvarg  4360  csbexg  5217  bj-csbsnlem  34851  bj-csbprc  34858  csbcom2fi  36049
  Copyright terms: Public domain W3C validator