Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3712, to prevent ambiguity. Theorem sbcel1g 4345 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4338). Theorem sbccsb 4365 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3829 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1542 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2112 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 3712 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2716 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1543 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: csb2 3831 csbeq1 3832 csbeq2 3834 csbeq2d 3835 cbvcsbw 3839 cbvcsb 3840 csbid 3842 csbcow 3844 csbco 3845 csbtt 3846 csbconstg 3848 csbgfi 3850 nfcsb1d 3852 nfcsbd 3855 nfcsbw 3856 csbie 3865 csbied 3867 csbie2g 3872 cbvralcsf 3874 cbvreucsf 3876 cbvrabcsf 3877 csbprc 4338 sbcel12 4340 sbceqg 4341 csbnestgfw 4351 csbnestgf 4356 csbvarg 4363 csbexg 5227 bj-csbsnlem 34990 bj-csbprc 34997 csbcom2fi 36192 |
Copyright terms: Public domain | W3C validator |