![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-csb | Structured version Visualization version GIF version |
Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc 3790, to prevent ambiguity. Theorem sbcel1g 4421 shows an example of how ambiguity could arise if we did not use distinguished brackets. When 𝐴 is a proper class, this evaluates to the empty set (see csbprc 4414). Theorem sbccsb 4441 recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005.) |
Ref | Expression |
---|---|
df-csb | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vx | . . 3 setvar 𝑥 | |
2 | cA | . . 3 class 𝐴 | |
3 | cB | . . 3 class 𝐵 | |
4 | 1, 2, 3 | csb 3907 | . 2 class ⦋𝐴 / 𝑥⦌𝐵 |
5 | vy | . . . . . 6 setvar 𝑦 | |
6 | 5 | cv 1535 | . . . . 5 class 𝑦 |
7 | 6, 3 | wcel 2105 | . . . 4 wff 𝑦 ∈ 𝐵 |
8 | 7, 1, 2 | wsbc 3790 | . . 3 wff [𝐴 / 𝑥]𝑦 ∈ 𝐵 |
9 | 8, 5 | cab 2711 | . 2 class {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
10 | 4, 9 | wceq 1536 | 1 wff ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
Colors of variables: wff setvar class |
This definition is referenced by: csb2 3909 csbeq1 3910 csbeq2 3912 csbeq2d 3913 csbeq2dv 3914 cbvcsbw 3917 cbvcsb 3918 cbvcsbv 3919 csbid 3920 csbcow 3922 csbco 3923 csbtt 3924 csbconstg 3926 csbgfi 3928 nfcsb1d 3930 nfcsbd 3933 nfcsbw 3934 csbie 3943 csbied 3945 csbie2g 3950 cbvralcsf 3952 cbvreucsf 3954 cbvrabcsf 3955 csbprc 4414 sbcel12 4416 sbceqg 4417 csbnestgfw 4427 csbnestgf 4432 csbvarg 4439 csbexg 5315 cbvcsbvw2 36213 cbvcsbdavw 36241 cbvcsbdavw2 36242 bj-csbsnlem 36885 bj-csbprc 36892 csbcom2fi 38114 |
Copyright terms: Public domain | W3C validator |