Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvssr Structured version   Visualization version   GIF version

Theorem brcnvssr 38470
Description: The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
brcnvssr (𝐴𝑉 → (𝐴 S 𝐵𝐵𝐴))

Proof of Theorem brcnvssr
StepHypRef Expression
1 relssr 38464 . . 3 Rel S
21relbrcnv 6094 . 2 (𝐴 S 𝐵𝐵 S 𝐴)
3 brssr 38465 . 2 (𝐴𝑉 → (𝐵 S 𝐴𝐵𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 S 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  wss 3926   class class class wbr 5119  ccnv 5653   S cssr 38148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-ssr 38462
This theorem is referenced by:  brcnvssrid  38471  br1cossxrncnvssrres  38472  dfcnvrefrels2  38492  dfcnvrefrels3  38493
  Copyright terms: Public domain W3C validator