Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvssr | Structured version Visualization version GIF version |
Description: The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
Ref | Expression |
---|---|
brcnvssr | ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relssr 36597 | . . 3 ⊢ Rel S | |
2 | 1 | relbrcnv 6012 | . 2 ⊢ (𝐴◡ S 𝐵 ↔ 𝐵 S 𝐴) |
3 | brssr 36598 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 S 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
4 | 2, 3 | syl5bb 282 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2109 ⊆ wss 3891 class class class wbr 5078 ◡ccnv 5587 S cssr 36315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-ssr 36595 |
This theorem is referenced by: brcnvssrid 36604 br1cossxrncnvssrres 36605 dfcnvrefrels2 36623 dfcnvrefrels3 36624 |
Copyright terms: Public domain | W3C validator |