| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvssr | Structured version Visualization version GIF version | ||
| Description: The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.) |
| Ref | Expression |
|---|---|
| brcnvssr | ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relssr 38464 | . . 3 ⊢ Rel S | |
| 2 | 1 | relbrcnv 6094 | . 2 ⊢ (𝐴◡ S 𝐵 ↔ 𝐵 S 𝐴) |
| 3 | brssr 38465 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐵 S 𝐴 ↔ 𝐵 ⊆ 𝐴)) | |
| 4 | 2, 3 | bitrid 283 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴◡ S 𝐵 ↔ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 ◡ccnv 5653 S cssr 38148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-ssr 38462 |
| This theorem is referenced by: brcnvssrid 38471 br1cossxrncnvssrres 38472 dfcnvrefrels2 38492 dfcnvrefrels3 38493 |
| Copyright terms: Public domain | W3C validator |