Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvssr Structured version   Visualization version   GIF version

Theorem brcnvssr 36720
Description: The converse of a subset relation swaps arguments. (Contributed by Peter Mazsa, 1-Aug-2019.)
Assertion
Ref Expression
brcnvssr (𝐴𝑉 → (𝐴 S 𝐵𝐵𝐴))

Proof of Theorem brcnvssr
StepHypRef Expression
1 relssr 36714 . . 3 Rel S
21relbrcnv 6025 . 2 (𝐴 S 𝐵𝐵 S 𝐴)
3 brssr 36715 . 2 (𝐴𝑉 → (𝐵 S 𝐴𝐵𝐴))
42, 3bitrid 283 1 (𝐴𝑉 → (𝐴 S 𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2104  wss 3892   class class class wbr 5081  ccnv 5599   S cssr 36384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608  df-ssr 36712
This theorem is referenced by:  brcnvssrid  36721  br1cossxrncnvssrres  36722  dfcnvrefrels2  36742  dfcnvrefrels3  36743
  Copyright terms: Public domain W3C validator