Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrelsrel Structured version   Visualization version   GIF version

Theorem elcnvrefrelsrel 38534
Description: For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 38524) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
elcnvrefrelsrel (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))

Proof of Theorem elcnvrefrelsrel
StepHypRef Expression
1 elrelsrel 38485 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 630 . 2 (𝑅𝑉 → ((𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)))
3 elcnvrefrels2 38532 . 2 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))
4 dfcnvrefrel2 38528 . 2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
52, 3, 43bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  cin 3916  wss 3917   I cid 5535   × cxp 5639  dom cdm 5641  ran crn 5642  Rel wrel 5646   Rels crels 38178   CnvRefRels ccnvrefrels 38184   CnvRefRel wcnvrefrel 38185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-rels 38483  df-ssr 38496  df-cnvrefs 38523  df-cnvrefrels 38524  df-cnvrefrel 38525
This theorem is referenced by:  elfunsALTVfunALTV  38696  eldisjsdisj  38726
  Copyright terms: Public domain W3C validator