![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrelsrel | Structured version Visualization version GIF version |
Description: For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 38482) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
Ref | Expression |
---|---|
elcnvrefrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrelsrel 38443 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
2 | 1 | anbi2d 629 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))) |
3 | elcnvrefrels2 38490 | . 2 ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) | |
4 | dfcnvrefrel2 38486 | . 2 ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 I cid 5592 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 Rels crels 38137 CnvRefRels ccnvrefrels 38143 CnvRefRel wcnvrefrel 38144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-rels 38441 df-ssr 38454 df-cnvrefs 38481 df-cnvrefrels 38482 df-cnvrefrel 38483 |
This theorem is referenced by: elfunsALTVfunALTV 38653 eldisjsdisj 38683 |
Copyright terms: Public domain | W3C validator |