| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvrefrelsrel | Structured version Visualization version GIF version | ||
| Description: For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 38524) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.) |
| Ref | Expression |
|---|---|
| elcnvrefrelsrel | ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrelsrel 38485 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
| 2 | 1 | anbi2d 630 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))) |
| 3 | elcnvrefrels2 38532 | . 2 ⊢ (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels )) | |
| 4 | dfcnvrefrel2 38528 | . 2 ⊢ ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 I cid 5535 × cxp 5639 dom cdm 5641 ran crn 5642 Rel wrel 5646 Rels crels 38178 CnvRefRels ccnvrefrels 38184 CnvRefRel wcnvrefrel 38185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-rels 38483 df-ssr 38496 df-cnvrefs 38523 df-cnvrefrels 38524 df-cnvrefrel 38525 |
| This theorem is referenced by: elfunsALTVfunALTV 38696 eldisjsdisj 38726 |
| Copyright terms: Public domain | W3C validator |