Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrelsrel Structured version   Visualization version   GIF version

Theorem elcnvrefrelsrel 37945
Description: For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 37935) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
elcnvrefrelsrel (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))

Proof of Theorem elcnvrefrelsrel
StepHypRef Expression
1 elrelsrel 37896 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 628 . 2 (𝑅𝑉 → ((𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)))
3 elcnvrefrels2 37943 . 2 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))
4 dfcnvrefrel2 37939 . 2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
52, 3, 43bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2099  cin 3943  wss 3944   I cid 5569   × cxp 5670  dom cdm 5672  ran crn 5673  Rel wrel 5677   Rels crels 37585   CnvRefRels ccnvrefrels 37591   CnvRefRel wcnvrefrel 37592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684  df-rels 37894  df-ssr 37907  df-cnvrefs 37934  df-cnvrefrels 37935  df-cnvrefrel 37936
This theorem is referenced by:  elfunsALTVfunALTV  38106  eldisjsdisj  38136
  Copyright terms: Public domain W3C validator