Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrelsrel Structured version   Visualization version   GIF version

Theorem elcnvrefrelsrel 36750
Description: For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 36740) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
elcnvrefrelsrel (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))

Proof of Theorem elcnvrefrelsrel
StepHypRef Expression
1 elrelsrel 36701 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 630 . 2 (𝑅𝑉 → ((𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)))
3 elcnvrefrels2 36748 . 2 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))
4 dfcnvrefrel2 36744 . 2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
52, 3, 43bitr4g 314 1 (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  cin 3891  wss 3892   I cid 5499   × cxp 5598  dom cdm 5600  ran crn 5601  Rel wrel 5605   Rels crels 36383   CnvRefRels ccnvrefrels 36389   CnvRefRel wcnvrefrel 36390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-xp 5606  df-rel 5607  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-rels 36699  df-ssr 36712  df-cnvrefs 36739  df-cnvrefrels 36740  df-cnvrefrel 36741
This theorem is referenced by:  elfunsALTVfunALTV  36911  eldisjsdisj  36941
  Copyright terms: Public domain W3C validator