MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cvs Structured version   Visualization version   GIF version

Definition df-cvs 25030
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.)
Assertion
Ref Expression
df-cvs ℂVec = (ℂMod ∩ LVec)

Detailed syntax breakdown of Definition df-cvs
StepHypRef Expression
1 ccvs 25029 . 2 class ℂVec
2 cclm 24968 . . 3 class ℂMod
3 clvec 21015 . . 3 class LVec
42, 3cin 3915 . 2 class (ℂMod ∩ LVec)
51, 4wceq 1540 1 wff ℂVec = (ℂMod ∩ LVec)
Colors of variables: wff setvar class
This definition is referenced by:  cvslvec  25031  cvsclm  25032  iscvs  25033  cvsi  25036  cnstrcvs  25047  cncvs  25051  recvs  25052  qcvs  25053  zclmncvs  25054  bj-rvecsscvec  37287
  Copyright terms: Public domain W3C validator