MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cvs Structured version   Visualization version   GIF version

Definition df-cvs 25157
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.)
Assertion
Ref Expression
df-cvs ℂVec = (ℂMod ∩ LVec)

Detailed syntax breakdown of Definition df-cvs
StepHypRef Expression
1 ccvs 25156 . 2 class ℂVec
2 cclm 25095 . . 3 class ℂMod
3 clvec 21101 . . 3 class LVec
42, 3cin 3950 . 2 class (ℂMod ∩ LVec)
51, 4wceq 1540 1 wff ℂVec = (ℂMod ∩ LVec)
Colors of variables: wff setvar class
This definition is referenced by:  cvslvec  25158  cvsclm  25159  iscvs  25160  cvsi  25163  cnstrcvs  25174  cncvs  25178  recvs  25179  recvsOLD  25180  qcvs  25181  zclmncvs  25182  bj-rvecsscvec  37305
  Copyright terms: Public domain W3C validator