MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cvs Structured version   Visualization version   GIF version

Definition df-cvs 25075
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.)
Assertion
Ref Expression
df-cvs ℂVec = (ℂMod ∩ LVec)

Detailed syntax breakdown of Definition df-cvs
StepHypRef Expression
1 ccvs 25074 . 2 class ℂVec
2 cclm 25013 . . 3 class ℂMod
3 clvec 21060 . . 3 class LVec
42, 3cin 3925 . 2 class (ℂMod ∩ LVec)
51, 4wceq 1540 1 wff ℂVec = (ℂMod ∩ LVec)
Colors of variables: wff setvar class
This definition is referenced by:  cvslvec  25076  cvsclm  25077  iscvs  25078  cvsi  25081  cnstrcvs  25092  cncvs  25096  recvs  25097  recvsOLD  25098  qcvs  25099  zclmncvs  25100  bj-rvecsscvec  37322
  Copyright terms: Public domain W3C validator