MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cvs Structured version   Visualization version   GIF version

Definition df-cvs 23251
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.)
Assertion
Ref Expression
df-cvs ℂVec = (ℂMod ∩ LVec)

Detailed syntax breakdown of Definition df-cvs
StepHypRef Expression
1 ccvs 23250 . 2 class ℂVec
2 cclm 23189 . . 3 class ℂMod
3 clvec 19423 . . 3 class LVec
42, 3cin 3768 . 2 class (ℂMod ∩ LVec)
51, 4wceq 1653 1 wff ℂVec = (ℂMod ∩ LVec)
Colors of variables: wff setvar class
This definition is referenced by:  cvslvec  23252  cvsclm  23253  iscvs  23254  cvsi  23257  cnstrcvs  23268  cncvs  23272  recvs  23273  qcvs  23274  zclmncvs  23275
  Copyright terms: Public domain W3C validator