![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-cvs | Structured version Visualization version GIF version |
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
df-cvs | ⊢ ℂVec = (ℂMod ∩ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccvs 24639 | . 2 class ℂVec | |
2 | cclm 24578 | . . 3 class ℂMod | |
3 | clvec 20713 | . . 3 class LVec | |
4 | 2, 3 | cin 3948 | . 2 class (ℂMod ∩ LVec) |
5 | 1, 4 | wceq 1542 | 1 wff ℂVec = (ℂMod ∩ LVec) |
Colors of variables: wff setvar class |
This definition is referenced by: cvslvec 24641 cvsclm 24642 iscvs 24643 cvsi 24646 cnstrcvs 24657 cncvs 24661 recvs 24662 recvsOLD 24663 qcvs 24664 zclmncvs 24665 bj-rvecsscvec 36185 |
Copyright terms: Public domain | W3C validator |