Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-cvs | Structured version Visualization version GIF version |
Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
df-cvs | ⊢ ℂVec = (ℂMod ∩ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccvs 24286 | . 2 class ℂVec | |
2 | cclm 24225 | . . 3 class ℂMod | |
3 | clvec 20364 | . . 3 class LVec | |
4 | 2, 3 | cin 3886 | . 2 class (ℂMod ∩ LVec) |
5 | 1, 4 | wceq 1539 | 1 wff ℂVec = (ℂMod ∩ LVec) |
Colors of variables: wff setvar class |
This definition is referenced by: cvslvec 24288 cvsclm 24289 iscvs 24290 cvsi 24293 cnstrcvs 24304 cncvs 24308 recvs 24309 recvsOLD 24310 qcvs 24311 zclmncvs 24312 bj-rvecsscvec 35475 |
Copyright terms: Public domain | W3C validator |