| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cvs | Structured version Visualization version GIF version | ||
| Description: Define the class of subcomplex vector spaces, which are the subcomplex modules which are also vector spaces. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| df-cvs | ⊢ ℂVec = (ℂMod ∩ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccvs 25051 | . 2 class ℂVec | |
| 2 | cclm 24990 | . . 3 class ℂMod | |
| 3 | clvec 21038 | . . 3 class LVec | |
| 4 | 2, 3 | cin 3897 | . 2 class (ℂMod ∩ LVec) |
| 5 | 1, 4 | wceq 1541 | 1 wff ℂVec = (ℂMod ∩ LVec) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cvslvec 25053 cvsclm 25054 iscvs 25055 cvsi 25058 cnstrcvs 25069 cncvs 25073 recvs 25074 qcvs 25075 zclmncvs 25076 bj-rvecsscvec 37369 |
| Copyright terms: Public domain | W3C validator |