![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncvs | Structured version Visualization version GIF version |
Description: The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
Ref | Expression |
---|---|
cnrlmod.c | ⊢ 𝐶 = (ringLMod‘ℂfld) |
Ref | Expression |
---|---|
cncvs | ⊢ 𝐶 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrlmod.c | . . . . 5 ⊢ 𝐶 = (ringLMod‘ℂfld) | |
2 | 1 | cnrlmod 24990 | . . . 4 ⊢ 𝐶 ∈ LMod |
3 | cnfldex 21236 | . . . . . 6 ⊢ ℂfld ∈ V | |
4 | cnfldbas 21237 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
5 | 4 | ressid 17196 | . . . . . 6 ⊢ (ℂfld ∈ V → (ℂfld ↾s ℂ) = ℂfld) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ (ℂfld ↾s ℂ) = ℂfld |
7 | 6 | eqcomi 2740 | . . . 4 ⊢ ℂfld = (ℂfld ↾s ℂ) |
8 | id 22 | . . . . 5 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
9 | addcl 11198 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
10 | negcl 11467 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
11 | ax-1cn 11174 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | mulcl 11200 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
13 | 8, 9, 10, 11, 12 | cnsubrglem 21284 | . . . 4 ⊢ ℂ ∈ (SubRing‘ℂfld) |
14 | rlmsca 21056 | . . . . . . 7 ⊢ (ℂfld ∈ V → ℂfld = (Scalar‘(ringLMod‘ℂfld))) | |
15 | 3, 14 | ax-mp 5 | . . . . . 6 ⊢ ℂfld = (Scalar‘(ringLMod‘ℂfld)) |
16 | 1 | eqcomi 2740 | . . . . . . 7 ⊢ (ringLMod‘ℂfld) = 𝐶 |
17 | 16 | fveq2i 6894 | . . . . . 6 ⊢ (Scalar‘(ringLMod‘ℂfld)) = (Scalar‘𝐶) |
18 | 15, 17 | eqtri 2759 | . . . . 5 ⊢ ℂfld = (Scalar‘𝐶) |
19 | 18 | isclmi 24924 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ ℂfld = (ℂfld ↾s ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝐶 ∈ ℂMod) |
20 | 2, 7, 13, 19 | mp3an 1460 | . . 3 ⊢ 𝐶 ∈ ℂMod |
21 | 1 | cnrlvec 24991 | . . 3 ⊢ 𝐶 ∈ LVec |
22 | 20, 21 | elini 4193 | . 2 ⊢ 𝐶 ∈ (ℂMod ∩ LVec) |
23 | df-cvs 24971 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
24 | 22, 23 | eleqtrri 2831 | 1 ⊢ 𝐶 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 ↾s cress 17180 Scalarcsca 17207 SubRingcsubrg 20465 LModclmod 20702 LVecclvec 20946 ringLModcrglmod 21016 ℂfldccnfld 21233 ℂModcclm 24909 ℂVecccvs 24970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-subg 19046 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-subrng 20442 df-subrg 20467 df-drng 20585 df-lmod 20704 df-lvec 20947 df-sra 21019 df-rgmod 21020 df-cnfld 21234 df-clm 24910 df-cvs 24971 |
This theorem is referenced by: cnncvs 25007 cnncvsmulassdemo 25012 |
Copyright terms: Public domain | W3C validator |