Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncvs | Structured version Visualization version GIF version |
Description: The complex left module of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 21-Sep-2021.) |
Ref | Expression |
---|---|
cnrlmod.c | ⊢ 𝐶 = (ringLMod‘ℂfld) |
Ref | Expression |
---|---|
cncvs | ⊢ 𝐶 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrlmod.c | . . . . 5 ⊢ 𝐶 = (ringLMod‘ℂfld) | |
2 | 1 | cnrlmod 24072 | . . . 4 ⊢ 𝐶 ∈ LMod |
3 | cnfldex 20399 | . . . . . 6 ⊢ ℂfld ∈ V | |
4 | cnfldbas 20400 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
5 | 4 | ressid 16829 | . . . . . 6 ⊢ (ℂfld ∈ V → (ℂfld ↾s ℂ) = ℂfld) |
6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ (ℂfld ↾s ℂ) = ℂfld |
7 | 6 | eqcomi 2748 | . . . 4 ⊢ ℂfld = (ℂfld ↾s ℂ) |
8 | id 22 | . . . . 5 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
9 | addcl 10841 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
10 | negcl 11108 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
11 | ax-1cn 10817 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | mulcl 10843 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
13 | 8, 9, 10, 11, 12 | cnsubrglem 20446 | . . . 4 ⊢ ℂ ∈ (SubRing‘ℂfld) |
14 | rlmsca 20270 | . . . . . . 7 ⊢ (ℂfld ∈ V → ℂfld = (Scalar‘(ringLMod‘ℂfld))) | |
15 | 3, 14 | ax-mp 5 | . . . . . 6 ⊢ ℂfld = (Scalar‘(ringLMod‘ℂfld)) |
16 | 1 | eqcomi 2748 | . . . . . . 7 ⊢ (ringLMod‘ℂfld) = 𝐶 |
17 | 16 | fveq2i 6742 | . . . . . 6 ⊢ (Scalar‘(ringLMod‘ℂfld)) = (Scalar‘𝐶) |
18 | 15, 17 | eqtri 2767 | . . . . 5 ⊢ ℂfld = (Scalar‘𝐶) |
19 | 18 | isclmi 24006 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ ℂfld = (ℂfld ↾s ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝐶 ∈ ℂMod) |
20 | 2, 7, 13, 19 | mp3an 1463 | . . 3 ⊢ 𝐶 ∈ ℂMod |
21 | 1 | cnrlvec 24073 | . . 3 ⊢ 𝐶 ∈ LVec |
22 | 20, 21 | elini 4124 | . 2 ⊢ 𝐶 ∈ (ℂMod ∩ LVec) |
23 | df-cvs 24053 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
24 | 22, 23 | eleqtrri 2839 | 1 ⊢ 𝐶 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 Vcvv 3423 ∩ cin 3882 ‘cfv 6401 (class class class)co 7235 ℂcc 10757 ↾s cress 16817 Scalarcsca 16838 SubRingcsubrg 19829 LModclmod 19932 LVecclvec 20172 ringLModcrglmod 20239 ℂfldccnfld 20396 ℂModcclm 23991 ℂVecccvs 24052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-cnex 10815 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-mulcom 10823 ax-addass 10824 ax-mulass 10825 ax-distr 10826 ax-i2m1 10827 ax-1ne0 10828 ax-1rid 10829 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 ax-pre-lttri 10833 ax-pre-lttrn 10834 ax-pre-ltadd 10835 ax-pre-mulgt0 10836 ax-addf 10838 ax-mulf 10839 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-tpos 7992 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-pnf 10899 df-mnf 10900 df-xr 10901 df-ltxr 10902 df-le 10903 df-sub 11094 df-neg 11095 df-div 11520 df-nn 11861 df-2 11923 df-3 11924 df-4 11925 df-5 11926 df-6 11927 df-7 11928 df-8 11929 df-9 11930 df-n0 12121 df-z 12207 df-dec 12324 df-uz 12469 df-fz 13126 df-struct 16733 df-sets 16750 df-slot 16768 df-ndx 16778 df-base 16794 df-ress 16818 df-plusg 16848 df-mulr 16849 df-starv 16850 df-sca 16851 df-vsca 16852 df-ip 16853 df-tset 16854 df-ple 16855 df-ds 16857 df-unif 16858 df-0g 16979 df-mgm 18147 df-sgrp 18196 df-mnd 18207 df-grp 18401 df-minusg 18402 df-subg 18573 df-cmn 19205 df-mgp 19538 df-ur 19550 df-ring 19597 df-cring 19598 df-oppr 19674 df-dvdsr 19692 df-unit 19693 df-invr 19723 df-dvr 19734 df-drng 19802 df-subrg 19831 df-lmod 19934 df-lvec 20173 df-sra 20242 df-rgmod 20243 df-cnfld 20397 df-clm 23992 df-cvs 24053 |
This theorem is referenced by: cnncvs 24088 cnncvsmulassdemo 24093 |
Copyright terms: Public domain | W3C validator |