MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvslvec Structured version   Visualization version   GIF version

Theorem cvslvec 24299
Description: A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypothesis
Ref Expression
cvslvec.1 (𝜑𝑊 ∈ ℂVec)
Assertion
Ref Expression
cvslvec (𝜑𝑊 ∈ LVec)

Proof of Theorem cvslvec
StepHypRef Expression
1 cvslvec.1 . 2 (𝜑𝑊 ∈ ℂVec)
2 df-cvs 24298 . . . 4 ℂVec = (ℂMod ∩ LVec)
32elin2 4136 . . 3 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
43simprbi 497 . 2 (𝑊 ∈ ℂVec → 𝑊 ∈ LVec)
51, 4syl 17 1 (𝜑𝑊 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  LVecclvec 20375  ℂModcclm 24236  ℂVecccvs 24297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-cvs 24298
This theorem is referenced by:  cvsunit  24305  cvsdivcl  24307  isncvsngp  24324
  Copyright terms: Public domain W3C validator