![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvslvec | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a (left) vector space. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvslvec.1 | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
Ref | Expression |
---|---|
cvslvec | ⊢ (𝜑 → 𝑊 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvslvec.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
2 | df-cvs 24872 | . . . 4 ⊢ ℂVec = (ℂMod ∩ LVec) | |
3 | 2 | elin2 4197 | . . 3 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ LVec) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 LVecclvec 20858 ℂModcclm 24810 ℂVecccvs 24871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-cvs 24872 |
This theorem is referenced by: cvsunit 24879 cvsdivcl 24881 isncvsngp 24898 |
Copyright terms: Public domain | W3C validator |