MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnstrcvs Structured version   Visualization version   GIF version

Theorem cnstrcvs 24656
Description: The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnstrcvs 𝑊 ∈ ℂVec

Proof of Theorem cnstrcvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlmod.w . . . . 5 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
21cnlmod 24655 . . . 4 𝑊 ∈ LMod
3 cnfldex 20946 . . . . . 6 fld ∈ V
4 cnfldbas 20947 . . . . . . 7 ℂ = (Base‘ℂfld)
54ressid 17188 . . . . . 6 (ℂfld ∈ V → (ℂflds ℂ) = ℂfld)
63, 5ax-mp 5 . . . . 5 (ℂflds ℂ) = ℂfld
76eqcomi 2741 . . . 4 fld = (ℂflds ℂ)
8 id 22 . . . . 5 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
9 addcl 11191 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
10 negcl 11459 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
11 ax-1cn 11167 . . . . 5 1 ∈ ℂ
12 mulcl 11193 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
138, 9, 10, 11, 12cnsubrglem 20994 . . . 4 ℂ ∈ (SubRing‘ℂfld)
14 qdass 4757 . . . . . . . 8 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), ℂfld⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
151, 14eqtri 2760 . . . . . . 7 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), ℂfld⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
1615lmodsca 17272 . . . . . 6 (ℂfld ∈ V → ℂfld = (Scalar‘𝑊))
173, 16ax-mp 5 . . . . 5 fld = (Scalar‘𝑊)
1817isclmi 24592 . . . 4 ((𝑊 ∈ LMod ∧ ℂfld = (ℂflds ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)
192, 7, 13, 18mp3an 1461 . . 3 𝑊 ∈ ℂMod
20 cndrng 20973 . . . 4 fld ∈ DivRing
2117islvec 20714 . . . 4 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ ℂfld ∈ DivRing))
222, 20, 21mpbir2an 709 . . 3 𝑊 ∈ LVec
2319, 22elini 4193 . 2 𝑊 ∈ (ℂMod ∩ LVec)
24 df-cvs 24639 . 2 ℂVec = (ℂMod ∩ LVec)
2523, 24eleqtrri 2832 1 𝑊 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3474  cun 3946  cin 3947  {csn 4628  {cpr 4630  {ctp 4632  cop 4634  cfv 6543  (class class class)co 7408  cc 11107   + caddc 11112   · cmul 11114  ndxcnx 17125  Basecbs 17143  s cress 17172  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  SubRingcsubrg 20314  DivRingcdr 20356  LModclmod 20470  LVecclvec 20712  fldccnfld 20943  ℂModcclm 24577  ℂVecccvs 24638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17386  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-grp 18821  df-minusg 18822  df-subg 19002  df-cmn 19649  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-oppr 20149  df-dvdsr 20170  df-unit 20171  df-invr 20201  df-dvr 20214  df-subrg 20316  df-drng 20358  df-lmod 20472  df-lvec 20713  df-cnfld 20944  df-clm 24578  df-cvs 24639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator