MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnstrcvs Structured version   Visualization version   GIF version

Theorem cnstrcvs 24285
Description: The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnstrcvs 𝑊 ∈ ℂVec

Proof of Theorem cnstrcvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlmod.w . . . . 5 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
21cnlmod 24284 . . . 4 𝑊 ∈ LMod
3 cnfldex 20581 . . . . . 6 fld ∈ V
4 cnfldbas 20582 . . . . . . 7 ℂ = (Base‘ℂfld)
54ressid 16935 . . . . . 6 (ℂfld ∈ V → (ℂflds ℂ) = ℂfld)
63, 5ax-mp 5 . . . . 5 (ℂflds ℂ) = ℂfld
76eqcomi 2748 . . . 4 fld = (ℂflds ℂ)
8 id 22 . . . . 5 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
9 addcl 10937 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
10 negcl 11204 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
11 ax-1cn 10913 . . . . 5 1 ∈ ℂ
12 mulcl 10939 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
138, 9, 10, 11, 12cnsubrglem 20629 . . . 4 ℂ ∈ (SubRing‘ℂfld)
14 qdass 4694 . . . . . . . 8 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), ℂfld⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
151, 14eqtri 2767 . . . . . . 7 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), ℂfld⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
1615lmodsca 17019 . . . . . 6 (ℂfld ∈ V → ℂfld = (Scalar‘𝑊))
173, 16ax-mp 5 . . . . 5 fld = (Scalar‘𝑊)
1817isclmi 24221 . . . 4 ((𝑊 ∈ LMod ∧ ℂfld = (ℂflds ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)
192, 7, 13, 18mp3an 1459 . . 3 𝑊 ∈ ℂMod
20 cndrng 20608 . . . 4 fld ∈ DivRing
2117islvec 20347 . . . 4 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ ℂfld ∈ DivRing))
222, 20, 21mpbir2an 707 . . 3 𝑊 ∈ LVec
2319, 22elini 4131 . 2 𝑊 ∈ (ℂMod ∩ LVec)
24 df-cvs 24268 . 2 ℂVec = (ℂMod ∩ LVec)
2523, 24eleqtrri 2839 1 𝑊 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2109  Vcvv 3430  cun 3889  cin 3890  {csn 4566  {cpr 4568  {ctp 4570  cop 4572  cfv 6430  (class class class)co 7268  cc 10853   + caddc 10858   · cmul 10860  ndxcnx 16875  Basecbs 16893  s cress 16922  +gcplusg 16943  Scalarcsca 16946   ·𝑠 cvsca 16947  DivRingcdr 19972  SubRingcsubrg 20001  LModclmod 20104  LVecclvec 20345  fldccnfld 20578  ℂModcclm 24206  ℂVecccvs 24267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-tpos 8026  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-0g 17133  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-grp 18561  df-minusg 18562  df-subg 18733  df-cmn 19369  df-mgp 19702  df-ur 19719  df-ring 19766  df-cring 19767  df-oppr 19843  df-dvdsr 19864  df-unit 19865  df-invr 19895  df-dvr 19906  df-drng 19974  df-subrg 20003  df-lmod 20106  df-lvec 20346  df-cnfld 20579  df-clm 24207  df-cvs 24268
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator