MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnstrcvs Structured version   Visualization version   GIF version

Theorem cnstrcvs 24062
Description: The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.)
Hypothesis
Ref Expression
cnlmod.w 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
Assertion
Ref Expression
cnstrcvs 𝑊 ∈ ℂVec

Proof of Theorem cnstrcvs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlmod.w . . . . 5 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩})
21cnlmod 24061 . . . 4 𝑊 ∈ LMod
3 cnfldex 20391 . . . . . 6 fld ∈ V
4 cnfldbas 20392 . . . . . . 7 ℂ = (Base‘ℂfld)
54ressid 16821 . . . . . 6 (ℂfld ∈ V → (ℂflds ℂ) = ℂfld)
63, 5ax-mp 5 . . . . 5 (ℂflds ℂ) = ℂfld
76eqcomi 2747 . . . 4 fld = (ℂflds ℂ)
8 id 22 . . . . 5 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
9 addcl 10836 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
10 negcl 11103 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
11 ax-1cn 10812 . . . . 5 1 ∈ ℂ
12 mulcl 10838 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
138, 9, 10, 11, 12cnsubrglem 20438 . . . 4 ℂ ∈ (SubRing‘ℂfld)
14 qdass 4684 . . . . . . . 8 ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩} ∪ {⟨(Scalar‘ndx), ℂfld⟩, ⟨( ·𝑠 ‘ndx), · ⟩}) = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), ℂfld⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
151, 14eqtri 2766 . . . . . . 7 𝑊 = ({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), + ⟩, ⟨(Scalar‘ndx), ℂfld⟩} ∪ {⟨( ·𝑠 ‘ndx), · ⟩})
1615lmodsca 16889 . . . . . 6 (ℂfld ∈ V → ℂfld = (Scalar‘𝑊))
173, 16ax-mp 5 . . . . 5 fld = (Scalar‘𝑊)
1817isclmi 23998 . . . 4 ((𝑊 ∈ LMod ∧ ℂfld = (ℂflds ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)
192, 7, 13, 18mp3an 1463 . . 3 𝑊 ∈ ℂMod
20 cndrng 20417 . . . 4 fld ∈ DivRing
2117islvec 20166 . . . 4 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ ℂfld ∈ DivRing))
222, 20, 21mpbir2an 711 . . 3 𝑊 ∈ LVec
2319, 22elini 4122 . 2 𝑊 ∈ (ℂMod ∩ LVec)
24 df-cvs 24045 . 2 ℂVec = (ℂMod ∩ LVec)
2523, 24eleqtrri 2838 1 𝑊 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2111  Vcvv 3421  cun 3879  cin 3880  {csn 4556  {cpr 4558  {ctp 4560  cop 4562  cfv 6398  (class class class)co 7232  cc 10752   + caddc 10757   · cmul 10759  ndxcnx 16769  Basecbs 16785  s cress 16809  +gcplusg 16827  Scalarcsca 16830   ·𝑠 cvsca 16831  DivRingcdr 19792  SubRingcsubrg 19821  LModclmod 19924  LVecclvec 20164  fldccnfld 20388  ℂModcclm 23983  ℂVecccvs 24044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-addf 10833  ax-mulf 10834
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-tpos 7989  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-4 11920  df-5 11921  df-6 11922  df-7 11923  df-8 11924  df-9 11925  df-n0 12116  df-z 12202  df-dec 12319  df-uz 12464  df-fz 13121  df-struct 16725  df-sets 16742  df-slot 16760  df-ndx 16770  df-base 16786  df-ress 16810  df-plusg 16840  df-mulr 16841  df-starv 16842  df-sca 16843  df-vsca 16844  df-tset 16846  df-ple 16847  df-ds 16849  df-unif 16850  df-0g 16971  df-mgm 18139  df-sgrp 18188  df-mnd 18199  df-grp 18393  df-minusg 18394  df-subg 18565  df-cmn 19197  df-mgp 19530  df-ur 19542  df-ring 19589  df-cring 19590  df-oppr 19666  df-dvdsr 19684  df-unit 19685  df-invr 19715  df-dvr 19726  df-drng 19794  df-subrg 19823  df-lmod 19926  df-lvec 20165  df-cnfld 20389  df-clm 23984  df-cvs 24045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator