| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnstrcvs | Structured version Visualization version GIF version | ||
| Description: The set of complex numbers is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by NM, 5-Nov-2006.) (Revised by AV, 20-Sep-2021.) |
| Ref | Expression |
|---|---|
| cnlmod.w | ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) |
| Ref | Expression |
|---|---|
| cnstrcvs | ⊢ 𝑊 ∈ ℂVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlmod.w | . . . . 5 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) | |
| 2 | 1 | cnlmod 25040 | . . . 4 ⊢ 𝑊 ∈ LMod |
| 3 | cnfldex 21267 | . . . . . 6 ⊢ ℂfld ∈ V | |
| 4 | cnfldbas 21268 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
| 5 | 4 | ressid 17214 | . . . . . 6 ⊢ (ℂfld ∈ V → (ℂfld ↾s ℂ) = ℂfld) |
| 6 | 3, 5 | ax-mp 5 | . . . . 5 ⊢ (ℂfld ↾s ℂ) = ℂfld |
| 7 | 6 | eqcomi 2738 | . . . 4 ⊢ ℂfld = (ℂfld ↾s ℂ) |
| 8 | id 22 | . . . . 5 ⊢ (𝑥 ∈ ℂ → 𝑥 ∈ ℂ) | |
| 9 | addcl 11150 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 10 | negcl 11421 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 11 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 12 | mulcl 11152 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 13 | 8, 9, 10, 11, 12 | cnsubrglem 21333 | . . . 4 ⊢ ℂ ∈ (SubRing‘ℂfld) |
| 14 | qdass 4717 | . . . . . . . 8 ⊢ ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉} ∪ {〈(Scalar‘ndx), ℂfld〉, 〈( ·𝑠 ‘ndx), · 〉}) = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), ℂfld〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) | |
| 15 | 1, 14 | eqtri 2752 | . . . . . . 7 ⊢ 𝑊 = ({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), ℂfld〉} ∪ {〈( ·𝑠 ‘ndx), · 〉}) |
| 16 | 15 | lmodsca 17291 | . . . . . 6 ⊢ (ℂfld ∈ V → ℂfld = (Scalar‘𝑊)) |
| 17 | 3, 16 | ax-mp 5 | . . . . 5 ⊢ ℂfld = (Scalar‘𝑊) |
| 18 | 17 | isclmi 24977 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ℂfld = (ℂfld ↾s ℂ) ∧ ℂ ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
| 19 | 2, 7, 13, 18 | mp3an 1463 | . . 3 ⊢ 𝑊 ∈ ℂMod |
| 20 | cndrng 21310 | . . . 4 ⊢ ℂfld ∈ DivRing | |
| 21 | 17 | islvec 21011 | . . . 4 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ ℂfld ∈ DivRing)) |
| 22 | 2, 20, 21 | mpbir2an 711 | . . 3 ⊢ 𝑊 ∈ LVec |
| 23 | 19, 22 | elini 4162 | . 2 ⊢ 𝑊 ∈ (ℂMod ∩ LVec) |
| 24 | df-cvs 25024 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
| 25 | 23, 24 | eleqtrri 2827 | 1 ⊢ 𝑊 ∈ ℂVec |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ∩ cin 3913 {csn 4589 {cpr 4591 {ctp 4593 〈cop 4595 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 + caddc 11071 · cmul 11073 ndxcnx 17163 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 Scalarcsca 17223 ·𝑠 cvsca 17224 SubRingcsubrg 20478 DivRingcdr 20638 LModclmod 20766 LVecclvec 21009 ℂfldccnfld 21264 ℂModcclm 24962 ℂVecccvs 25023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-subrng 20455 df-subrg 20479 df-drng 20640 df-lmod 20768 df-lvec 21010 df-cnfld 21265 df-clm 24963 df-cvs 25024 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |