Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  recvs Structured version   Visualization version   GIF version

Theorem recvs 23314
 Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
Hypothesis
Ref Expression
recvs.r 𝑅 = (ringLMod‘ℝfld)
Assertion
Ref Expression
recvs 𝑅 ∈ ℂVec

Proof of Theorem recvs
StepHypRef Expression
1 refld 20325 . . . . . 6 fld ∈ Field
2 fldidom 19665 . . . . . . 7 (ℝfld ∈ Field → ℝfld ∈ IDomn)
3 isidom 19664 . . . . . . . 8 (ℝfld ∈ IDomn ↔ (ℝfld ∈ CRing ∧ ℝfld ∈ Domn))
4 crngring 18911 . . . . . . . . 9 (ℝfld ∈ CRing → ℝfld ∈ Ring)
54adantr 474 . . . . . . . 8 ((ℝfld ∈ CRing ∧ ℝfld ∈ Domn) → ℝfld ∈ Ring)
63, 5sylbi 209 . . . . . . 7 (ℝfld ∈ IDomn → ℝfld ∈ Ring)
72, 6syl 17 . . . . . 6 (ℝfld ∈ Field → ℝfld ∈ Ring)
81, 7ax-mp 5 . . . . 5 fld ∈ Ring
9 rlmlmod 19565 . . . . 5 (ℝfld ∈ Ring → (ringLMod‘ℝfld) ∈ LMod)
108, 9ax-mp 5 . . . 4 (ringLMod‘ℝfld) ∈ LMod
11 rlmsca 19560 . . . . . 6 (ℝfld ∈ Field → ℝfld = (Scalar‘(ringLMod‘ℝfld)))
121, 11ax-mp 5 . . . . 5 fld = (Scalar‘(ringLMod‘ℝfld))
13 df-refld 20311 . . . . 5 fld = (ℂflds ℝ)
1412, 13eqtr3i 2850 . . . 4 (Scalar‘(ringLMod‘ℝfld)) = (ℂflds ℝ)
15 resubdrg 20314 . . . . 5 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
1615simpli 478 . . . 4 ℝ ∈ (SubRing‘ℂfld)
17 eqid 2824 . . . . 5 (Scalar‘(ringLMod‘ℝfld)) = (Scalar‘(ringLMod‘ℝfld))
1817isclmi 23245 . . . 4 (((ringLMod‘ℝfld) ∈ LMod ∧ (Scalar‘(ringLMod‘ℝfld)) = (ℂflds ℝ) ∧ ℝ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℝfld) ∈ ℂMod)
1910, 14, 16, 18mp3an 1591 . . 3 (ringLMod‘ℝfld) ∈ ℂMod
2015simpri 481 . . . 4 fld ∈ DivRing
21 rlmlvec 19566 . . . 4 (ℝfld ∈ DivRing → (ringLMod‘ℝfld) ∈ LVec)
2220, 21ax-mp 5 . . 3 (ringLMod‘ℝfld) ∈ LVec
2319, 22elini 4023 . 2 (ringLMod‘ℝfld) ∈ (ℂMod ∩ LVec)
24 recvs.r . 2 𝑅 = (ringLMod‘ℝfld)
25 df-cvs 23292 . 2 ℂVec = (ℂMod ∩ LVec)
2623, 24, 253eltr4i 2918 1 𝑅 ∈ ℂVec
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 386   = wceq 1658   ∈ wcel 2166   ∩ cin 3796  ‘cfv 6122  (class class class)co 6904  ℝcr 10250   ↾s cress 16222  Scalarcsca 16307  Ringcrg 18900  CRingccrg 18901  DivRingcdr 19102  Fieldcfield 19103  SubRingcsubrg 19131  LModclmod 19218  LVecclvec 19460  ringLModcrglmod 19529  Domncdomn 19640  IDomncidom 19641  ℂfldccnfld 20105  ℝfldcrefld 20310  ℂModcclm 23230  ℂVecccvs 23291 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-addf 10330  ax-mulf 10331 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-tpos 7616  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-fz 12619  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-mulr 16318  df-starv 16319  df-sca 16320  df-vsca 16321  df-ip 16322  df-tset 16323  df-ple 16324  df-ds 16326  df-unif 16327  df-0g 16454  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-grp 17778  df-minusg 17779  df-subg 17941  df-cmn 18547  df-mgp 18843  df-ur 18855  df-ring 18902  df-cring 18903  df-oppr 18976  df-dvdsr 18994  df-unit 18995  df-invr 19025  df-dvr 19036  df-drng 19104  df-field 19105  df-subrg 19133  df-lmod 19220  df-lvec 19461  df-sra 19532  df-rgmod 19533  df-nzr 19618  df-rlreg 19643  df-domn 19644  df-idom 19645  df-cnfld 20106  df-refld 20311  df-clm 23231  df-cvs 23292 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator