Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recvs | Structured version Visualization version GIF version |
Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) (Proof shortened by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
recvs.r | ⊢ 𝑅 = (ringLMod‘ℝfld) |
Ref | Expression |
---|---|
recvs | ⊢ 𝑅 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 20805 | . . . . 5 ⊢ ℝfld ∈ Field | |
2 | isfld 19981 | . . . . . . 7 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
3 | 2 | simprbi 496 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld ∈ CRing) |
4 | 3 | crngringd 19777 | . . . . 5 ⊢ (ℝfld ∈ Field → ℝfld ∈ Ring) |
5 | rlmlmod 20456 | . . . . 5 ⊢ (ℝfld ∈ Ring → (ringLMod‘ℝfld) ∈ LMod) | |
6 | 1, 4, 5 | mp2b 10 | . . . 4 ⊢ (ringLMod‘ℝfld) ∈ LMod |
7 | rlmsca 20451 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld = (Scalar‘(ringLMod‘ℝfld))) | |
8 | 1, 7 | ax-mp 5 | . . . . 5 ⊢ ℝfld = (Scalar‘(ringLMod‘ℝfld)) |
9 | df-refld 20791 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
10 | 8, 9 | eqtr3i 2769 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℝfld)) = (ℂfld ↾s ℝ) |
11 | resubdrg 20794 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
12 | 11 | simpli 483 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
13 | eqid 2739 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℝfld)) = (Scalar‘(ringLMod‘ℝfld)) | |
14 | 13 | isclmi 24221 | . . . 4 ⊢ (((ringLMod‘ℝfld) ∈ LMod ∧ (Scalar‘(ringLMod‘ℝfld)) = (ℂfld ↾s ℝ) ∧ ℝ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℝfld) ∈ ℂMod) |
15 | 6, 10, 12, 14 | mp3an 1459 | . . 3 ⊢ (ringLMod‘ℝfld) ∈ ℂMod |
16 | 11 | simpri 485 | . . . 4 ⊢ ℝfld ∈ DivRing |
17 | rlmlvec 20457 | . . . 4 ⊢ (ℝfld ∈ DivRing → (ringLMod‘ℝfld) ∈ LVec) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ (ringLMod‘ℝfld) ∈ LVec |
19 | 15, 18 | elini 4131 | . 2 ⊢ (ringLMod‘ℝfld) ∈ (ℂMod ∩ LVec) |
20 | recvs.r | . 2 ⊢ 𝑅 = (ringLMod‘ℝfld) | |
21 | df-cvs 24268 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
22 | 19, 20, 21 | 3eltr4i 2853 | 1 ⊢ 𝑅 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 ↾s cress 16922 Scalarcsca 16946 Ringcrg 19764 CRingccrg 19765 DivRingcdr 19972 Fieldcfield 19973 SubRingcsubrg 20001 LModclmod 20104 LVecclvec 20345 ringLModcrglmod 20412 ℂfldccnfld 20578 ℝfldcrefld 20790 ℂModcclm 24206 ℂVecccvs 24267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-subg 18733 df-cmn 19369 df-mgp 19702 df-ur 19719 df-ring 19766 df-cring 19767 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-dvr 19906 df-drng 19974 df-field 19975 df-subrg 20003 df-lmod 20106 df-lvec 20346 df-sra 20415 df-rgmod 20416 df-cnfld 20579 df-refld 20791 df-clm 24207 df-cvs 24268 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |