Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > recvs | Structured version Visualization version GIF version |
Description: The field of the real numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) (Proof shortened by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
recvs.r | ⊢ 𝑅 = (ringLMod‘ℝfld) |
Ref | Expression |
---|---|
recvs | ⊢ 𝑅 ∈ ℂVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 20824 | . . . . 5 ⊢ ℝfld ∈ Field | |
2 | isfld 20000 | . . . . . . 7 ⊢ (ℝfld ∈ Field ↔ (ℝfld ∈ DivRing ∧ ℝfld ∈ CRing)) | |
3 | 2 | simprbi 497 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld ∈ CRing) |
4 | 3 | crngringd 19796 | . . . . 5 ⊢ (ℝfld ∈ Field → ℝfld ∈ Ring) |
5 | rlmlmod 20475 | . . . . 5 ⊢ (ℝfld ∈ Ring → (ringLMod‘ℝfld) ∈ LMod) | |
6 | 1, 4, 5 | mp2b 10 | . . . 4 ⊢ (ringLMod‘ℝfld) ∈ LMod |
7 | rlmsca 20470 | . . . . . 6 ⊢ (ℝfld ∈ Field → ℝfld = (Scalar‘(ringLMod‘ℝfld))) | |
8 | 1, 7 | ax-mp 5 | . . . . 5 ⊢ ℝfld = (Scalar‘(ringLMod‘ℝfld)) |
9 | df-refld 20810 | . . . . 5 ⊢ ℝfld = (ℂfld ↾s ℝ) | |
10 | 8, 9 | eqtr3i 2768 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℝfld)) = (ℂfld ↾s ℝ) |
11 | resubdrg 20813 | . . . . 5 ⊢ (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) | |
12 | 11 | simpli 484 | . . . 4 ⊢ ℝ ∈ (SubRing‘ℂfld) |
13 | eqid 2738 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℝfld)) = (Scalar‘(ringLMod‘ℝfld)) | |
14 | 13 | isclmi 24240 | . . . 4 ⊢ (((ringLMod‘ℝfld) ∈ LMod ∧ (Scalar‘(ringLMod‘ℝfld)) = (ℂfld ↾s ℝ) ∧ ℝ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℝfld) ∈ ℂMod) |
15 | 6, 10, 12, 14 | mp3an 1460 | . . 3 ⊢ (ringLMod‘ℝfld) ∈ ℂMod |
16 | 11 | simpri 486 | . . . 4 ⊢ ℝfld ∈ DivRing |
17 | rlmlvec 20476 | . . . 4 ⊢ (ℝfld ∈ DivRing → (ringLMod‘ℝfld) ∈ LVec) | |
18 | 16, 17 | ax-mp 5 | . . 3 ⊢ (ringLMod‘ℝfld) ∈ LVec |
19 | 15, 18 | elini 4127 | . 2 ⊢ (ringLMod‘ℝfld) ∈ (ℂMod ∩ LVec) |
20 | recvs.r | . 2 ⊢ 𝑅 = (ringLMod‘ℝfld) | |
21 | df-cvs 24287 | . 2 ⊢ ℂVec = (ℂMod ∩ LVec) | |
22 | 19, 20, 21 | 3eltr4i 2852 | 1 ⊢ 𝑅 ∈ ℂVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 ↾s cress 16941 Scalarcsca 16965 Ringcrg 19783 CRingccrg 19784 DivRingcdr 19991 Fieldcfield 19992 SubRingcsubrg 20020 LModclmod 20123 LVecclvec 20364 ringLModcrglmod 20431 ℂfldccnfld 20597 ℝfldcrefld 20809 ℂModcclm 24225 ℂVecccvs 24286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-cmn 19388 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-dvr 19925 df-drng 19993 df-field 19994 df-subrg 20022 df-lmod 20125 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-cnfld 20598 df-refld 20810 df-clm 24226 df-cvs 24287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |