MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsi Structured version   Visualization version   GIF version

Theorem cvsi 25177
Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
cvsi.x 𝑋 = (Base‘𝑊)
cvsi.a + = (+g𝑊)
cvsi.s 𝑆 = (Base‘(Scalar‘𝑊))
cvsi.m = ( ·sf𝑊)
cvsi.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
cvsi (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Distinct variable groups:   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑧,𝑆
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   𝑋(𝑥)

Proof of Theorem cvsi
StepHypRef Expression
1 df-cvs 25171 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4213 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 lveclmod 21123 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4 lmodabl 20924 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
53, 4syl 17 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
65adantl 481 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → 𝑊 ∈ Abel)
7 eqid 2735 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 cvsi.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑊))
97, 8clmsscn 25126 . . . . 5 (𝑊 ∈ ℂMod → 𝑆 ⊆ ℂ)
10 clmlmod 25114 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
11 cvsi.x . . . . . . 7 𝑋 = (Base‘𝑊)
12 cvsi.m . . . . . . 7 = ( ·sf𝑊)
1311, 7, 8, 12lmodscaf 20899 . . . . . 6 (𝑊 ∈ LMod → :(𝑆 × 𝑋)⟶𝑋)
1410, 13syl 17 . . . . 5 (𝑊 ∈ ℂMod → :(𝑆 × 𝑋)⟶𝑋)
159, 14jca 511 . . . 4 (𝑊 ∈ ℂMod → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
1615adantr 480 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
17 cvsi.t . . . . . . 7 · = ( ·𝑠𝑊)
1811, 17clmvs1 25140 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → (1 · 𝑥) = 𝑥)
1910adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → 𝑊 ∈ LMod)
2019ad2antrr 726 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑊 ∈ LMod)
21 simplr 769 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑆)
22 simpllr 776 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑥𝑋)
23 simpr 484 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
24 cvsi.a . . . . . . . . . . 11 + = (+g𝑊)
2511, 24, 7, 17, 8lmodvsdi 20900 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑥𝑋𝑧𝑋)) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2620, 21, 22, 23, 25syl13anc 1371 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2726ralrimiva 3144 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
287clmadd 25121 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
2928ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → + = (+g‘(Scalar‘𝑊)))
3029oveqdr 7459 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 + 𝑧) = (𝑦(+g‘(Scalar‘𝑊))𝑧))
3130oveq1d 7446 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥))
3219ad2antrr 726 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑊 ∈ LMod)
33 simplr 769 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
34 simpr 484 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
35 simpllr 776 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑥𝑋)
36 eqid 2735 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3711, 24, 7, 17, 8, 36lmodvsdir 20901 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3832, 33, 34, 35, 37syl13anc 1371 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3931, 38eqtrd 2775 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
407clmmul 25122 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → · = (.r‘(Scalar‘𝑊)))
4140ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → · = (.r‘(Scalar‘𝑊)))
4241oveqdr 7459 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑦(.r‘(Scalar‘𝑊))𝑧))
4342oveq1d 7446 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥))
44 eqid 2735 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4511, 7, 17, 8, 44lmodvsass 20902 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4632, 33, 34, 35, 45syl13anc 1371 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4743, 46eqtrd 2775 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4839, 47jca 511 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
4948ralrimiva 3144 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
5027, 49jca 511 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5150ralrimiva 3144 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5218, 51jca 511 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5352ralrimiva 3144 . . . 4 (𝑊 ∈ ℂMod → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5453adantr 480 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
556, 16, 543jca 1127 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
562, 55sylbi 217 1 (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  Abelcabl 19814  LModclmod 20875   ·sf cscaf 20876  LVecclvec 21119  ℂModcclm 25109  ℂVecccvs 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-ur 20200  df-ring 20253  df-cring 20254  df-subrg 20587  df-lmod 20877  df-scaf 20878  df-lvec 21120  df-cnfld 21383  df-clm 25110  df-cvs 25171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator