MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsi Structured version   Visualization version   GIF version

Theorem cvsi 23735
Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
cvsi.x 𝑋 = (Base‘𝑊)
cvsi.a + = (+g𝑊)
cvsi.s 𝑆 = (Base‘(Scalar‘𝑊))
cvsi.m = ( ·sf𝑊)
cvsi.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
cvsi (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Distinct variable groups:   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑧,𝑆
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   𝑋(𝑥)

Proof of Theorem cvsi
StepHypRef Expression
1 df-cvs 23729 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4124 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4 lmodabl 19674 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
53, 4syl 17 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
65adantl 485 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → 𝑊 ∈ Abel)
7 eqid 2798 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 cvsi.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑊))
97, 8clmsscn 23684 . . . . 5 (𝑊 ∈ ℂMod → 𝑆 ⊆ ℂ)
10 clmlmod 23672 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
11 cvsi.x . . . . . . 7 𝑋 = (Base‘𝑊)
12 cvsi.m . . . . . . 7 = ( ·sf𝑊)
1311, 7, 8, 12lmodscaf 19649 . . . . . 6 (𝑊 ∈ LMod → :(𝑆 × 𝑋)⟶𝑋)
1410, 13syl 17 . . . . 5 (𝑊 ∈ ℂMod → :(𝑆 × 𝑋)⟶𝑋)
159, 14jca 515 . . . 4 (𝑊 ∈ ℂMod → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
1615adantr 484 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
17 cvsi.t . . . . . . 7 · = ( ·𝑠𝑊)
1811, 17clmvs1 23698 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → (1 · 𝑥) = 𝑥)
1910adantr 484 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → 𝑊 ∈ LMod)
2019ad2antrr 725 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑊 ∈ LMod)
21 simplr 768 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑆)
22 simpllr 775 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑥𝑋)
23 simpr 488 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
24 cvsi.a . . . . . . . . . . 11 + = (+g𝑊)
2511, 24, 7, 17, 8lmodvsdi 19650 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑥𝑋𝑧𝑋)) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2620, 21, 22, 23, 25syl13anc 1369 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2726ralrimiva 3149 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
287clmadd 23679 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
2928ad2antrr 725 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → + = (+g‘(Scalar‘𝑊)))
3029oveqdr 7163 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 + 𝑧) = (𝑦(+g‘(Scalar‘𝑊))𝑧))
3130oveq1d 7150 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥))
3219ad2antrr 725 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑊 ∈ LMod)
33 simplr 768 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
34 simpr 488 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
35 simpllr 775 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑥𝑋)
36 eqid 2798 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3711, 24, 7, 17, 8, 36lmodvsdir 19651 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3832, 33, 34, 35, 37syl13anc 1369 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3931, 38eqtrd 2833 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
407clmmul 23680 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → · = (.r‘(Scalar‘𝑊)))
4140ad2antrr 725 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → · = (.r‘(Scalar‘𝑊)))
4241oveqdr 7163 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑦(.r‘(Scalar‘𝑊))𝑧))
4342oveq1d 7150 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥))
44 eqid 2798 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4511, 7, 17, 8, 44lmodvsass 19652 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4632, 33, 34, 35, 45syl13anc 1369 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4743, 46eqtrd 2833 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4839, 47jca 515 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
4948ralrimiva 3149 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
5027, 49jca 515 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5150ralrimiva 3149 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5218, 51jca 515 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5352ralrimiva 3149 . . . 4 (𝑊 ∈ ℂMod → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5453adantr 484 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
556, 16, 543jca 1125 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
562, 55sylbi 220 1 (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  1c1 10527   + caddc 10529   · cmul 10531  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  Abelcabl 18899  LModclmod 19627   ·sf cscaf 19628  LVecclvec 19867  ℂModcclm 23667  ℂVecccvs 23728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-lmod 19629  df-scaf 19630  df-lvec 19868  df-cnfld 20092  df-clm 23668  df-cvs 23729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator