MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsi Structured version   Visualization version   GIF version

Theorem cvsi 23728
Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
cvsi.x 𝑋 = (Base‘𝑊)
cvsi.a + = (+g𝑊)
cvsi.s 𝑆 = (Base‘(Scalar‘𝑊))
cvsi.m = ( ·sf𝑊)
cvsi.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
cvsi (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Distinct variable groups:   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑧,𝑆
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   𝑋(𝑥)

Proof of Theorem cvsi
StepHypRef Expression
1 df-cvs 23722 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4174 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 lveclmod 19872 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4 lmodabl 19675 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
53, 4syl 17 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
65adantl 484 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → 𝑊 ∈ Abel)
7 eqid 2821 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 cvsi.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑊))
97, 8clmsscn 23677 . . . . 5 (𝑊 ∈ ℂMod → 𝑆 ⊆ ℂ)
10 clmlmod 23665 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
11 cvsi.x . . . . . . 7 𝑋 = (Base‘𝑊)
12 cvsi.m . . . . . . 7 = ( ·sf𝑊)
1311, 7, 8, 12lmodscaf 19650 . . . . . 6 (𝑊 ∈ LMod → :(𝑆 × 𝑋)⟶𝑋)
1410, 13syl 17 . . . . 5 (𝑊 ∈ ℂMod → :(𝑆 × 𝑋)⟶𝑋)
159, 14jca 514 . . . 4 (𝑊 ∈ ℂMod → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
1615adantr 483 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
17 cvsi.t . . . . . . 7 · = ( ·𝑠𝑊)
1811, 17clmvs1 23691 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → (1 · 𝑥) = 𝑥)
1910adantr 483 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → 𝑊 ∈ LMod)
2019ad2antrr 724 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑊 ∈ LMod)
21 simplr 767 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑆)
22 simpllr 774 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑥𝑋)
23 simpr 487 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
24 cvsi.a . . . . . . . . . . 11 + = (+g𝑊)
2511, 24, 7, 17, 8lmodvsdi 19651 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑥𝑋𝑧𝑋)) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2620, 21, 22, 23, 25syl13anc 1368 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2726ralrimiva 3182 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
287clmadd 23672 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
2928ad2antrr 724 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → + = (+g‘(Scalar‘𝑊)))
3029oveqdr 7178 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 + 𝑧) = (𝑦(+g‘(Scalar‘𝑊))𝑧))
3130oveq1d 7165 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥))
3219ad2antrr 724 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑊 ∈ LMod)
33 simplr 767 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
34 simpr 487 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
35 simpllr 774 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑥𝑋)
36 eqid 2821 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3711, 24, 7, 17, 8, 36lmodvsdir 19652 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3832, 33, 34, 35, 37syl13anc 1368 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3931, 38eqtrd 2856 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
407clmmul 23673 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → · = (.r‘(Scalar‘𝑊)))
4140ad2antrr 724 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → · = (.r‘(Scalar‘𝑊)))
4241oveqdr 7178 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑦(.r‘(Scalar‘𝑊))𝑧))
4342oveq1d 7165 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥))
44 eqid 2821 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4511, 7, 17, 8, 44lmodvsass 19653 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4632, 33, 34, 35, 45syl13anc 1368 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4743, 46eqtrd 2856 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4839, 47jca 514 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
4948ralrimiva 3182 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
5027, 49jca 514 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5150ralrimiva 3182 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5218, 51jca 514 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5352ralrimiva 3182 . . . 4 (𝑊 ∈ ℂMod → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5453adantr 483 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
556, 16, 543jca 1124 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
562, 55sylbi 219 1 (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3936   × cxp 5548  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  1c1 10532   + caddc 10534   · cmul 10536  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  Abelcabl 18901  LModclmod 19628   ·sf cscaf 19629  LVecclvec 19868  ℂModcclm 23660  ℂVecccvs 23721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-subrg 19527  df-lmod 19630  df-scaf 19631  df-lvec 19869  df-cnfld 20540  df-clm 23661  df-cvs 23722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator