MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsi Structured version   Visualization version   GIF version

Theorem cvsi 25164
Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
cvsi.x 𝑋 = (Base‘𝑊)
cvsi.a + = (+g𝑊)
cvsi.s 𝑆 = (Base‘(Scalar‘𝑊))
cvsi.m = ( ·sf𝑊)
cvsi.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
cvsi (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Distinct variable groups:   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑧,𝑆
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   𝑋(𝑥)

Proof of Theorem cvsi
StepHypRef Expression
1 df-cvs 25158 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4202 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 lveclmod 21106 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4 lmodabl 20908 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
53, 4syl 17 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
65adantl 481 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → 𝑊 ∈ Abel)
7 eqid 2736 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 cvsi.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑊))
97, 8clmsscn 25113 . . . . 5 (𝑊 ∈ ℂMod → 𝑆 ⊆ ℂ)
10 clmlmod 25101 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
11 cvsi.x . . . . . . 7 𝑋 = (Base‘𝑊)
12 cvsi.m . . . . . . 7 = ( ·sf𝑊)
1311, 7, 8, 12lmodscaf 20883 . . . . . 6 (𝑊 ∈ LMod → :(𝑆 × 𝑋)⟶𝑋)
1410, 13syl 17 . . . . 5 (𝑊 ∈ ℂMod → :(𝑆 × 𝑋)⟶𝑋)
159, 14jca 511 . . . 4 (𝑊 ∈ ℂMod → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
1615adantr 480 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
17 cvsi.t . . . . . . 7 · = ( ·𝑠𝑊)
1811, 17clmvs1 25127 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → (1 · 𝑥) = 𝑥)
1910adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → 𝑊 ∈ LMod)
2019ad2antrr 726 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑊 ∈ LMod)
21 simplr 768 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑆)
22 simpllr 775 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑥𝑋)
23 simpr 484 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
24 cvsi.a . . . . . . . . . . 11 + = (+g𝑊)
2511, 24, 7, 17, 8lmodvsdi 20884 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑥𝑋𝑧𝑋)) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2620, 21, 22, 23, 25syl13anc 1373 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2726ralrimiva 3145 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
287clmadd 25108 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
2928ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → + = (+g‘(Scalar‘𝑊)))
3029oveqdr 7460 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 + 𝑧) = (𝑦(+g‘(Scalar‘𝑊))𝑧))
3130oveq1d 7447 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥))
3219ad2antrr 726 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑊 ∈ LMod)
33 simplr 768 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
34 simpr 484 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
35 simpllr 775 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑥𝑋)
36 eqid 2736 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3711, 24, 7, 17, 8, 36lmodvsdir 20885 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3832, 33, 34, 35, 37syl13anc 1373 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3931, 38eqtrd 2776 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
407clmmul 25109 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → · = (.r‘(Scalar‘𝑊)))
4140ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → · = (.r‘(Scalar‘𝑊)))
4241oveqdr 7460 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑦(.r‘(Scalar‘𝑊))𝑧))
4342oveq1d 7447 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥))
44 eqid 2736 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4511, 7, 17, 8, 44lmodvsass 20886 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4632, 33, 34, 35, 45syl13anc 1373 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4743, 46eqtrd 2776 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4839, 47jca 511 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
4948ralrimiva 3145 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
5027, 49jca 511 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5150ralrimiva 3145 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5218, 51jca 511 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5352ralrimiva 3145 . . . 4 (𝑊 ∈ ℂMod → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5453adantr 480 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
556, 16, 543jca 1128 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
562, 55sylbi 217 1 (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wss 3950   × cxp 5682  wf 6556  cfv 6560  (class class class)co 7432  cc 11154  1c1 11157   + caddc 11159   · cmul 11161  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  Abelcabl 19800  LModclmod 20859   ·sf cscaf 20860  LVecclvec 21102  ℂModcclm 25096  ℂVecccvs 25157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-subg 19142  df-cmn 19801  df-abl 19802  df-mgp 20139  df-ur 20180  df-ring 20233  df-cring 20234  df-subrg 20571  df-lmod 20861  df-scaf 20862  df-lvec 21103  df-cnfld 21366  df-clm 25097  df-cvs 25158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator