MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsi Structured version   Visualization version   GIF version

Theorem cvsi 25067
Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006.) (Revised by AV, 21-Sep-2021.)
Hypotheses
Ref Expression
cvsi.x 𝑋 = (Base‘𝑊)
cvsi.a + = (+g𝑊)
cvsi.s 𝑆 = (Base‘(Scalar‘𝑊))
cvsi.m = ( ·sf𝑊)
cvsi.t · = ( ·𝑠𝑊)
Assertion
Ref Expression
cvsi (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Distinct variable groups:   𝑥,𝑊,𝑦,𝑧   𝑦,𝑋,𝑧   𝑧,𝑆
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑧)   · (𝑥,𝑦,𝑧)   𝑋(𝑥)

Proof of Theorem cvsi
StepHypRef Expression
1 df-cvs 25061 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4154 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 lveclmod 21050 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
4 lmodabl 20852 . . . . 5 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
53, 4syl 17 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
65adantl 481 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → 𝑊 ∈ Abel)
7 eqid 2733 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 cvsi.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑊))
97, 8clmsscn 25016 . . . . 5 (𝑊 ∈ ℂMod → 𝑆 ⊆ ℂ)
10 clmlmod 25004 . . . . . 6 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
11 cvsi.x . . . . . . 7 𝑋 = (Base‘𝑊)
12 cvsi.m . . . . . . 7 = ( ·sf𝑊)
1311, 7, 8, 12lmodscaf 20827 . . . . . 6 (𝑊 ∈ LMod → :(𝑆 × 𝑋)⟶𝑋)
1410, 13syl 17 . . . . 5 (𝑊 ∈ ℂMod → :(𝑆 × 𝑋)⟶𝑋)
159, 14jca 511 . . . 4 (𝑊 ∈ ℂMod → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
1615adantr 480 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋))
17 cvsi.t . . . . . . 7 · = ( ·𝑠𝑊)
1811, 17clmvs1 25030 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → (1 · 𝑥) = 𝑥)
1910adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → 𝑊 ∈ LMod)
2019ad2antrr 726 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑊 ∈ LMod)
21 simplr 768 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑦𝑆)
22 simpllr 775 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑥𝑋)
23 simpr 484 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → 𝑧𝑋)
24 cvsi.a . . . . . . . . . . 11 + = (+g𝑊)
2511, 24, 7, 17, 8lmodvsdi 20828 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑥𝑋𝑧𝑋)) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2620, 21, 22, 23, 25syl13anc 1374 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑋) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
2726ralrimiva 3126 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
287clmadd 25011 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → + = (+g‘(Scalar‘𝑊)))
2928ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → + = (+g‘(Scalar‘𝑊)))
3029oveqdr 7383 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 + 𝑧) = (𝑦(+g‘(Scalar‘𝑊))𝑧))
3130oveq1d 7370 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥))
3219ad2antrr 726 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑊 ∈ LMod)
33 simplr 768 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑦𝑆)
34 simpr 484 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑧𝑆)
35 simpllr 775 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → 𝑥𝑋)
36 eqid 2733 . . . . . . . . . . . . 13 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
3711, 24, 7, 17, 8, 36lmodvsdir 20829 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3832, 33, 34, 35, 37syl13anc 1374 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(+g‘(Scalar‘𝑊))𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
3931, 38eqtrd 2768 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
407clmmul 25012 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → · = (.r‘(Scalar‘𝑊)))
4140ad2antrr 726 . . . . . . . . . . . . 13 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → · = (.r‘(Scalar‘𝑊)))
4241oveqdr 7383 . . . . . . . . . . . 12 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (𝑦 · 𝑧) = (𝑦(.r‘(Scalar‘𝑊))𝑧))
4342oveq1d 7370 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥))
44 eqid 2733 . . . . . . . . . . . . 13 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
4511, 7, 17, 8, 44lmodvsass 20830 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ (𝑦𝑆𝑧𝑆𝑥𝑋)) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4632, 33, 34, 35, 45syl13anc 1374 . . . . . . . . . . 11 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦(.r‘(Scalar‘𝑊))𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4743, 46eqtrd 2768 . . . . . . . . . 10 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
4839, 47jca 511 . . . . . . . . 9 ((((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) ∧ 𝑧𝑆) → (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
4948ralrimiva 3126 . . . . . . . 8 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))
5027, 49jca 511 . . . . . . 7 (((𝑊 ∈ ℂMod ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5150ralrimiva 3126 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))
5218, 51jca 511 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝑥𝑋) → ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5352ralrimiva 3126 . . . 4 (𝑊 ∈ ℂMod → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
5453adantr 480 . . 3 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥))))))
556, 16, 543jca 1128 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
562, 55sylbi 217 1 (𝑊 ∈ ℂVec → (𝑊 ∈ Abel ∧ (𝑆 ⊆ ℂ ∧ :(𝑆 × 𝑋)⟶𝑋) ∧ ∀𝑥𝑋 ((1 · 𝑥) = 𝑥 ∧ ∀𝑦𝑆 (∀𝑧𝑋 (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)) ∧ ∀𝑧𝑆 (((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)) ∧ ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  wss 3899   × cxp 5619  wf 6485  cfv 6489  (class class class)co 7355  cc 11014  1c1 11017   + caddc 11019   · cmul 11021  Basecbs 17130  +gcplusg 17171  .rcmulr 17172  Scalarcsca 17174   ·𝑠 cvsca 17175  Abelcabl 19703  LModclmod 20803   ·sf cscaf 20804  LVecclvec 21046  ℂModcclm 24999  ℂVecccvs 25060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-addf 11095  ax-mulf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-z 12479  df-dec 12599  df-uz 12743  df-fz 13418  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-starv 17186  df-tset 17190  df-ple 17191  df-ds 17193  df-unif 17194  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-subg 19046  df-cmn 19704  df-abl 19705  df-mgp 20069  df-ur 20110  df-ring 20163  df-cring 20164  df-subrg 20495  df-lmod 20805  df-scaf 20806  df-lvec 21047  df-cnfld 21302  df-clm 25000  df-cvs 25061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator