| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zclmncvs | Structured version Visualization version GIF version | ||
| Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
| Ref | Expression |
|---|---|
| zclmncvs.z | ⊢ 𝑍 = (ringLMod‘ℤring) |
| Ref | Expression |
|---|---|
| zclmncvs | ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring 21366 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 2 | rlmlmod 21117 | . . . . 5 ⊢ (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ringLMod‘ℤring) ∈ LMod |
| 4 | rlmsca 21112 | . . . . . 6 ⊢ (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring))) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤring = (Scalar‘(ringLMod‘ℤring)) |
| 6 | df-zring 21364 | . . . . 5 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 7 | 5, 6 | eqtr3i 2755 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) |
| 8 | zsubrg 21344 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring)) | |
| 10 | 9 | isclmi 24984 | . . . 4 ⊢ (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod) |
| 11 | 3, 7, 8, 10 | mp3an 1463 | . . 3 ⊢ (ringLMod‘ℤring) ∈ ℂMod |
| 12 | zclmncvs.z | . . . 4 ⊢ 𝑍 = (ringLMod‘ℤring) | |
| 13 | 12 | eleq1i 2820 | . . 3 ⊢ (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod) |
| 14 | 11, 13 | mpbir 231 | . 2 ⊢ 𝑍 ∈ ℂMod |
| 15 | zringndrg 21385 | . . . . . . . 8 ⊢ ℤring ∉ DivRing | |
| 16 | 15 | neli 3032 | . . . . . . 7 ⊢ ¬ ℤring ∈ DivRing |
| 17 | 4 | eqcomd 2736 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring) |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (Scalar‘(ringLMod‘ℤring)) = ℤring |
| 19 | 18 | eleq1i 2820 | . . . . . . 7 ⊢ ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing) |
| 20 | 16, 19 | mtbir 323 | . . . . . 6 ⊢ ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing |
| 21 | 20 | intnan 486 | . . . . 5 ⊢ ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing) |
| 22 | 9 | islvec 21018 | . . . . 5 ⊢ ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)) |
| 23 | 21, 22 | mtbir 323 | . . . 4 ⊢ ¬ (ringLMod‘ℤring) ∈ LVec |
| 24 | 23 | olci 866 | . . 3 ⊢ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec) |
| 25 | df-nel 3031 | . . . 4 ⊢ (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec) | |
| 26 | ianor 983 | . . . . . 6 ⊢ (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) | |
| 27 | elin 3933 | . . . . . 6 ⊢ ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec)) | |
| 28 | 26, 27 | xchnxbir 333 | . . . . 5 ⊢ (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 29 | df-cvs 25031 | . . . . . 6 ⊢ ℂVec = (ℂMod ∩ LVec) | |
| 30 | 12, 29 | eleq12i 2822 | . . . . 5 ⊢ (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec)) |
| 31 | 28, 30 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 32 | 25, 31 | bitri 275 | . . 3 ⊢ (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 33 | 24, 32 | mpbir 231 | . 2 ⊢ 𝑍 ∉ ℂVec |
| 34 | 14, 33 | pm3.2i 470 | 1 ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∩ cin 3916 ‘cfv 6514 (class class class)co 7390 ℤcz 12536 ↾s cress 17207 Scalarcsca 17230 Ringcrg 20149 SubRingcsubrg 20485 DivRingcdr 20645 LModclmod 20773 LVecclvec 21016 ringLModcrglmod 21086 ℂfldccnfld 21271 ℤringczring 21363 ℂModcclm 24969 ℂVecccvs 25030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-rp 12959 df-fz 13476 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-gz 16908 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrng 20462 df-subrg 20486 df-drng 20647 df-lmod 20775 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-cnfld 21272 df-zring 21364 df-clm 24970 df-cvs 25031 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |