Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zclmncvs | Structured version Visualization version GIF version |
Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
Ref | Expression |
---|---|
zclmncvs.z | ⊢ 𝑍 = (ringLMod‘ℤring) |
Ref | Expression |
---|---|
zclmncvs | ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 20294 | . . . . 5 ⊢ ℤring ∈ Ring | |
2 | rlmlmod 20098 | . . . . 5 ⊢ (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ringLMod‘ℤring) ∈ LMod |
4 | rlmsca 20093 | . . . . . 6 ⊢ (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring))) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤring = (Scalar‘(ringLMod‘ℤring)) |
6 | df-zring 20292 | . . . . 5 ⊢ ℤring = (ℂfld ↾s ℤ) | |
7 | 5, 6 | eqtr3i 2763 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) |
8 | zsubrg 20272 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
9 | eqid 2738 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring)) | |
10 | 9 | isclmi 23831 | . . . 4 ⊢ (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod) |
11 | 3, 7, 8, 10 | mp3an 1462 | . . 3 ⊢ (ringLMod‘ℤring) ∈ ℂMod |
12 | zclmncvs.z | . . . 4 ⊢ 𝑍 = (ringLMod‘ℤring) | |
13 | 12 | eleq1i 2823 | . . 3 ⊢ (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod) |
14 | 11, 13 | mpbir 234 | . 2 ⊢ 𝑍 ∈ ℂMod |
15 | zringndrg 20311 | . . . . . . . 8 ⊢ ℤring ∉ DivRing | |
16 | 15 | neli 3040 | . . . . . . 7 ⊢ ¬ ℤring ∈ DivRing |
17 | 4 | eqcomd 2744 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring) |
18 | 1, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (Scalar‘(ringLMod‘ℤring)) = ℤring |
19 | 18 | eleq1i 2823 | . . . . . . 7 ⊢ ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing) |
20 | 16, 19 | mtbir 326 | . . . . . 6 ⊢ ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing |
21 | 20 | intnan 490 | . . . . 5 ⊢ ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing) |
22 | 9 | islvec 19997 | . . . . 5 ⊢ ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)) |
23 | 21, 22 | mtbir 326 | . . . 4 ⊢ ¬ (ringLMod‘ℤring) ∈ LVec |
24 | 23 | olci 865 | . . 3 ⊢ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec) |
25 | df-nel 3039 | . . . 4 ⊢ (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec) | |
26 | ianor 981 | . . . . . 6 ⊢ (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) | |
27 | elin 3859 | . . . . . 6 ⊢ ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec)) | |
28 | 26, 27 | xchnxbir 336 | . . . . 5 ⊢ (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
29 | df-cvs 23878 | . . . . . 6 ⊢ ℂVec = (ℂMod ∩ LVec) | |
30 | 12, 29 | eleq12i 2825 | . . . . 5 ⊢ (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec)) |
31 | 28, 30 | xchnxbir 336 | . . . 4 ⊢ (¬ 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
32 | 25, 31 | bitri 278 | . . 3 ⊢ (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
33 | 24, 32 | mpbir 234 | . 2 ⊢ 𝑍 ∉ ℂVec |
34 | 14, 33 | pm3.2i 474 | 1 ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ∉ wnel 3038 ∩ cin 3842 ‘cfv 6339 (class class class)co 7172 ℤcz 12064 ↾s cress 16589 Scalarcsca 16673 Ringcrg 19418 DivRingcdr 19623 SubRingcsubrg 19652 LModclmod 19755 LVecclvec 19995 ringLModcrglmod 20062 ℂfldccnfld 20219 ℤringzring 20291 ℂModcclm 23816 ℂVecccvs 23877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 ax-pre-sup 10695 ax-addf 10696 ax-mulf 10697 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-tpos 7923 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-sup 8981 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-div 11378 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-z 12065 df-dec 12182 df-uz 12327 df-rp 12475 df-fz 12984 df-seq 13463 df-exp 13524 df-cj 14550 df-re 14551 df-im 14552 df-sqrt 14686 df-abs 14687 df-gz 16368 df-struct 16590 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-ress 16596 df-plusg 16683 df-mulr 16684 df-starv 16685 df-sca 16686 df-vsca 16687 df-ip 16688 df-tset 16689 df-ple 16690 df-ds 16692 df-unif 16693 df-0g 16820 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-grp 18224 df-minusg 18225 df-subg 18396 df-cmn 19028 df-mgp 19361 df-ur 19373 df-ring 19420 df-cring 19421 df-oppr 19497 df-dvdsr 19515 df-unit 19516 df-invr 19546 df-dvr 19557 df-drng 19625 df-subrg 19654 df-lmod 19757 df-lvec 19996 df-sra 20065 df-rgmod 20066 df-cnfld 20220 df-zring 20292 df-clm 23817 df-cvs 23878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |