MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zclmncvs Structured version   Visualization version   GIF version

Theorem zclmncvs 23226
Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
Hypothesis
Ref Expression
zclmncvs.z 𝑍 = (ringLMod‘ℤring)
Assertion
Ref Expression
zclmncvs (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec)

Proof of Theorem zclmncvs
StepHypRef Expression
1 zringring 20094 . . . . 5 ring ∈ Ring
2 rlmlmod 19479 . . . . 5 (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod)
31, 2ax-mp 5 . . . 4 (ringLMod‘ℤring) ∈ LMod
4 rlmsca 19474 . . . . . 6 (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring)))
51, 4ax-mp 5 . . . . 5 ring = (Scalar‘(ringLMod‘ℤring))
6 df-zring 20092 . . . . 5 ring = (ℂflds ℤ)
75, 6eqtr3i 2789 . . . 4 (Scalar‘(ringLMod‘ℤring)) = (ℂflds ℤ)
8 zsubrg 20072 . . . 4 ℤ ∈ (SubRing‘ℂfld)
9 eqid 2765 . . . . 5 (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring))
109isclmi 23155 . . . 4 (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂflds ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod)
113, 7, 8, 10mp3an 1585 . . 3 (ringLMod‘ℤring) ∈ ℂMod
12 zclmncvs.z . . . 4 𝑍 = (ringLMod‘ℤring)
1312eleq1i 2835 . . 3 (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod)
1411, 13mpbir 222 . 2 𝑍 ∈ ℂMod
15 zringndrg 20111 . . . . . . . 8 ring ∉ DivRing
1615neli 3042 . . . . . . 7 ¬ ℤring ∈ DivRing
174eqcomd 2771 . . . . . . . . 9 (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring)
181, 17ax-mp 5 . . . . . . . 8 (Scalar‘(ringLMod‘ℤring)) = ℤring
1918eleq1i 2835 . . . . . . 7 ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing)
2016, 19mtbir 314 . . . . . 6 ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing
2120intnan 480 . . . . 5 ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)
229islvec 19376 . . . . 5 ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing))
2321, 22mtbir 314 . . . 4 ¬ (ringLMod‘ℤring) ∈ LVec
2423olci 892 . . 3 (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)
25 df-nel 3041 . . . 4 (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec)
26 ianor 1004 . . . . . 6 (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
27 elin 3958 . . . . . 6 ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec))
2826, 27xchnxbir 324 . . . . 5 (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
29 df-cvs 23202 . . . . . 6 ℂVec = (ℂMod ∩ LVec)
3012, 29eleq12i 2837 . . . . 5 (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec))
3128, 30xchnxbir 324 . . . 4 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
3225, 31bitri 266 . . 3 (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
3324, 32mpbir 222 . 2 𝑍 ∉ ℂVec
3414, 33pm3.2i 462 1 (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  wo 873   = wceq 1652  wcel 2155  wnel 3040  cin 3731  cfv 6068  (class class class)co 6842  cz 11624  s cress 16131  Scalarcsca 16217  Ringcrg 18814  DivRingcdr 19016  SubRingcsubrg 19045  LModclmod 19132  LVecclvec 19374  ringLModcrglmod 19443  fldccnfld 20019  ringzring 20091  ℂModcclm 23140  ℂVecccvs 23201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-rp 12029  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-gz 15913  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-minusg 17693  df-subg 17855  df-cmn 18461  df-mgp 18757  df-ur 18769  df-ring 18816  df-cring 18817  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-drng 19018  df-subrg 19047  df-lmod 19134  df-lvec 19375  df-sra 19446  df-rgmod 19447  df-cnfld 20020  df-zring 20092  df-clm 23141  df-cvs 23202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator