| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zclmncvs | Structured version Visualization version GIF version | ||
| Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
| Ref | Expression |
|---|---|
| zclmncvs.z | ⊢ 𝑍 = (ringLMod‘ℤring) |
| Ref | Expression |
|---|---|
| zclmncvs | ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring 21374 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 2 | rlmlmod 21125 | . . . . 5 ⊢ (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ringLMod‘ℤring) ∈ LMod |
| 4 | rlmsca 21120 | . . . . . 6 ⊢ (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring))) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤring = (Scalar‘(ringLMod‘ℤring)) |
| 6 | df-zring 21372 | . . . . 5 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 7 | 5, 6 | eqtr3i 2754 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) |
| 8 | zsubrg 21345 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring)) | |
| 10 | 9 | isclmi 24993 | . . . 4 ⊢ (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod) |
| 11 | 3, 7, 8, 10 | mp3an 1463 | . . 3 ⊢ (ringLMod‘ℤring) ∈ ℂMod |
| 12 | zclmncvs.z | . . . 4 ⊢ 𝑍 = (ringLMod‘ℤring) | |
| 13 | 12 | eleq1i 2819 | . . 3 ⊢ (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod) |
| 14 | 11, 13 | mpbir 231 | . 2 ⊢ 𝑍 ∈ ℂMod |
| 15 | zringndrg 21393 | . . . . . . . 8 ⊢ ℤring ∉ DivRing | |
| 16 | 15 | neli 3031 | . . . . . . 7 ⊢ ¬ ℤring ∈ DivRing |
| 17 | 4 | eqcomd 2735 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring) |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (Scalar‘(ringLMod‘ℤring)) = ℤring |
| 19 | 18 | eleq1i 2819 | . . . . . . 7 ⊢ ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing) |
| 20 | 16, 19 | mtbir 323 | . . . . . 6 ⊢ ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing |
| 21 | 20 | intnan 486 | . . . . 5 ⊢ ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing) |
| 22 | 9 | islvec 21026 | . . . . 5 ⊢ ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)) |
| 23 | 21, 22 | mtbir 323 | . . . 4 ⊢ ¬ (ringLMod‘ℤring) ∈ LVec |
| 24 | 23 | olci 866 | . . 3 ⊢ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec) |
| 25 | df-nel 3030 | . . . 4 ⊢ (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec) | |
| 26 | ianor 983 | . . . . . 6 ⊢ (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) | |
| 27 | elin 3921 | . . . . . 6 ⊢ ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec)) | |
| 28 | 26, 27 | xchnxbir 333 | . . . . 5 ⊢ (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 29 | df-cvs 25040 | . . . . . 6 ⊢ ℂVec = (ℂMod ∩ LVec) | |
| 30 | 12, 29 | eleq12i 2821 | . . . . 5 ⊢ (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec)) |
| 31 | 28, 30 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 32 | 25, 31 | bitri 275 | . . 3 ⊢ (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 33 | 24, 32 | mpbir 231 | . 2 ⊢ 𝑍 ∉ ℂVec |
| 34 | 14, 33 | pm3.2i 470 | 1 ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∩ cin 3904 ‘cfv 6486 (class class class)co 7353 ℤcz 12489 ↾s cress 17159 Scalarcsca 17182 Ringcrg 20136 SubRingcsubrg 20472 DivRingcdr 20632 LModclmod 20781 LVecclvec 21024 ringLModcrglmod 21094 ℂfldccnfld 21279 ℤringczring 21371 ℂModcclm 24978 ℂVecccvs 25039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-gz 16860 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-cring 20139 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-dvr 20304 df-subrng 20449 df-subrg 20473 df-drng 20634 df-lmod 20783 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-cnfld 21280 df-zring 21372 df-clm 24979 df-cvs 25040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |