| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zclmncvs | Structured version Visualization version GIF version | ||
| Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
| Ref | Expression |
|---|---|
| zclmncvs.z | ⊢ 𝑍 = (ringLMod‘ℤring) |
| Ref | Expression |
|---|---|
| zclmncvs | ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring 21384 | . . . . 5 ⊢ ℤring ∈ Ring | |
| 2 | rlmlmod 21135 | . . . . 5 ⊢ (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod) | |
| 3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ringLMod‘ℤring) ∈ LMod |
| 4 | rlmsca 21130 | . . . . . 6 ⊢ (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring))) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤring = (Scalar‘(ringLMod‘ℤring)) |
| 6 | df-zring 21382 | . . . . 5 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 7 | 5, 6 | eqtr3i 2756 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) |
| 8 | zsubrg 21355 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring)) | |
| 10 | 9 | isclmi 25002 | . . . 4 ⊢ (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod) |
| 11 | 3, 7, 8, 10 | mp3an 1463 | . . 3 ⊢ (ringLMod‘ℤring) ∈ ℂMod |
| 12 | zclmncvs.z | . . . 4 ⊢ 𝑍 = (ringLMod‘ℤring) | |
| 13 | 12 | eleq1i 2822 | . . 3 ⊢ (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod) |
| 14 | 11, 13 | mpbir 231 | . 2 ⊢ 𝑍 ∈ ℂMod |
| 15 | zringndrg 21403 | . . . . . . . 8 ⊢ ℤring ∉ DivRing | |
| 16 | 15 | neli 3034 | . . . . . . 7 ⊢ ¬ ℤring ∈ DivRing |
| 17 | 4 | eqcomd 2737 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring) |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (Scalar‘(ringLMod‘ℤring)) = ℤring |
| 19 | 18 | eleq1i 2822 | . . . . . . 7 ⊢ ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing) |
| 20 | 16, 19 | mtbir 323 | . . . . . 6 ⊢ ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing |
| 21 | 20 | intnan 486 | . . . . 5 ⊢ ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing) |
| 22 | 9 | islvec 21036 | . . . . 5 ⊢ ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)) |
| 23 | 21, 22 | mtbir 323 | . . . 4 ⊢ ¬ (ringLMod‘ℤring) ∈ LVec |
| 24 | 23 | olci 866 | . . 3 ⊢ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec) |
| 25 | df-nel 3033 | . . . 4 ⊢ (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec) | |
| 26 | ianor 983 | . . . . . 6 ⊢ (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) | |
| 27 | elin 3918 | . . . . . 6 ⊢ ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec)) | |
| 28 | 26, 27 | xchnxbir 333 | . . . . 5 ⊢ (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 29 | df-cvs 25049 | . . . . . 6 ⊢ ℂVec = (ℂMod ∩ LVec) | |
| 30 | 12, 29 | eleq12i 2824 | . . . . 5 ⊢ (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec)) |
| 31 | 28, 30 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 32 | 25, 31 | bitri 275 | . . 3 ⊢ (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
| 33 | 24, 32 | mpbir 231 | . 2 ⊢ 𝑍 ∉ ℂVec |
| 34 | 14, 33 | pm3.2i 470 | 1 ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∩ cin 3901 ‘cfv 6481 (class class class)co 7346 ℤcz 12465 ↾s cress 17138 Scalarcsca 17161 Ringcrg 20149 SubRingcsubrg 20482 DivRingcdr 20642 LModclmod 20791 LVecclvec 21034 ringLModcrglmod 21104 ℂfldccnfld 21289 ℤringczring 21381 ℂModcclm 24987 ℂVecccvs 25048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-gz 16839 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-subrng 20459 df-subrg 20483 df-drng 20644 df-lmod 20793 df-lvec 21035 df-sra 21105 df-rgmod 21106 df-cnfld 21290 df-zring 21382 df-clm 24988 df-cvs 25049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |