MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zclmncvs Structured version   Visualization version   GIF version

Theorem zclmncvs 25196
Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
Hypothesis
Ref Expression
zclmncvs.z 𝑍 = (ringLMod‘ℤring)
Assertion
Ref Expression
zclmncvs (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec)

Proof of Theorem zclmncvs
StepHypRef Expression
1 zringring 21478 . . . . 5 ring ∈ Ring
2 rlmlmod 21228 . . . . 5 (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod)
31, 2ax-mp 5 . . . 4 (ringLMod‘ℤring) ∈ LMod
4 rlmsca 21223 . . . . . 6 (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring)))
51, 4ax-mp 5 . . . . 5 ring = (Scalar‘(ringLMod‘ℤring))
6 df-zring 21476 . . . . 5 ring = (ℂflds ℤ)
75, 6eqtr3i 2765 . . . 4 (Scalar‘(ringLMod‘ℤring)) = (ℂflds ℤ)
8 zsubrg 21456 . . . 4 ℤ ∈ (SubRing‘ℂfld)
9 eqid 2735 . . . . 5 (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring))
109isclmi 25124 . . . 4 (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂflds ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod)
113, 7, 8, 10mp3an 1460 . . 3 (ringLMod‘ℤring) ∈ ℂMod
12 zclmncvs.z . . . 4 𝑍 = (ringLMod‘ℤring)
1312eleq1i 2830 . . 3 (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod)
1411, 13mpbir 231 . 2 𝑍 ∈ ℂMod
15 zringndrg 21497 . . . . . . . 8 ring ∉ DivRing
1615neli 3046 . . . . . . 7 ¬ ℤring ∈ DivRing
174eqcomd 2741 . . . . . . . . 9 (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring)
181, 17ax-mp 5 . . . . . . . 8 (Scalar‘(ringLMod‘ℤring)) = ℤring
1918eleq1i 2830 . . . . . . 7 ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing)
2016, 19mtbir 323 . . . . . 6 ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing
2120intnan 486 . . . . 5 ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)
229islvec 21121 . . . . 5 ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing))
2321, 22mtbir 323 . . . 4 ¬ (ringLMod‘ℤring) ∈ LVec
2423olci 866 . . 3 (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)
25 df-nel 3045 . . . 4 (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec)
26 ianor 983 . . . . . 6 (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
27 elin 3979 . . . . . 6 ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec))
2826, 27xchnxbir 333 . . . . 5 (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
29 df-cvs 25171 . . . . . 6 ℂVec = (ℂMod ∩ LVec)
3012, 29eleq12i 2832 . . . . 5 (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec))
3128, 30xchnxbir 333 . . . 4 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
3225, 31bitri 275 . . 3 (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec))
3324, 32mpbir 231 . 2 𝑍 ∉ ℂVec
3414, 33pm3.2i 470 1 (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 847   = wceq 1537  wcel 2106  wnel 3044  cin 3962  cfv 6563  (class class class)co 7431  cz 12611  s cress 17274  Scalarcsca 17301  Ringcrg 20251  SubRingcsubrg 20586  DivRingcdr 20746  LModclmod 20875  LVecclvec 21119  ringLModcrglmod 21189  fldccnfld 21382  ringczring 21475  ℂModcclm 25109  ℂVecccvs 25170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-gz 16964  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-subrng 20563  df-subrg 20587  df-drng 20748  df-lmod 20877  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-cnfld 21383  df-zring 21476  df-clm 25110  df-cvs 25171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator