MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qcvs Structured version   Visualization version   GIF version

Theorem qcvs 23752
Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
Hypothesis
Ref Expression
qcvs.q 𝑄 = (ringLMod‘(ℂflds ℚ))
Assertion
Ref Expression
qcvs 𝑄 ∈ ℂVec

Proof of Theorem qcvs
StepHypRef Expression
1 qsubdrg 20143 . . . . . 6 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2 drngring 19502 . . . . . . 7 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) ∈ Ring)
32adantl 485 . . . . . 6 ((ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing) → (ℂflds ℚ) ∈ Ring)
41, 3ax-mp 5 . . . . 5 (ℂflds ℚ) ∈ Ring
5 rlmlmod 19970 . . . . 5 ((ℂflds ℚ) ∈ Ring → (ringLMod‘(ℂflds ℚ)) ∈ LMod)
64, 5ax-mp 5 . . . 4 (ringLMod‘(ℂflds ℚ)) ∈ LMod
71simpri 489 . . . . 5 (ℂflds ℚ) ∈ DivRing
8 rlmsca 19965 . . . . . 6 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) = (Scalar‘(ringLMod‘(ℂflds ℚ))))
98eqcomd 2804 . . . . 5 ((ℂflds ℚ) ∈ DivRing → (Scalar‘(ringLMod‘(ℂflds ℚ))) = (ℂflds ℚ))
107, 9ax-mp 5 . . . 4 (Scalar‘(ringLMod‘(ℂflds ℚ))) = (ℂflds ℚ)
111simpli 487 . . . 4 ℚ ∈ (SubRing‘ℂfld)
12 eqid 2798 . . . . 5 (Scalar‘(ringLMod‘(ℂflds ℚ))) = (Scalar‘(ringLMod‘(ℂflds ℚ)))
1312isclmi 23682 . . . 4 (((ringLMod‘(ℂflds ℚ)) ∈ LMod ∧ (Scalar‘(ringLMod‘(ℂflds ℚ))) = (ℂflds ℚ) ∧ ℚ ∈ (SubRing‘ℂfld)) → (ringLMod‘(ℂflds ℚ)) ∈ ℂMod)
146, 10, 11, 13mp3an 1458 . . 3 (ringLMod‘(ℂflds ℚ)) ∈ ℂMod
15 rlmlvec 19971 . . . 4 ((ℂflds ℚ) ∈ DivRing → (ringLMod‘(ℂflds ℚ)) ∈ LVec)
167, 15ax-mp 5 . . 3 (ringLMod‘(ℂflds ℚ)) ∈ LVec
1714, 16elini 4120 . 2 (ringLMod‘(ℂflds ℚ)) ∈ (ℂMod ∩ LVec)
18 qcvs.q . 2 𝑄 = (ringLMod‘(ℂflds ℚ))
19 df-cvs 23729 . 2 ℂVec = (ℂMod ∩ LVec)
2017, 18, 193eltr4i 2903 1 𝑄 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  cin 3880  cfv 6324  (class class class)co 7135  cq 12336  s cress 16476  Scalarcsca 16560  Ringcrg 19290  DivRingcdr 19495  SubRingcsubrg 19524  LModclmod 19627  LVecclvec 19867  ringLModcrglmod 19934  fldccnfld 20091  ℂModcclm 23667  ℂVecccvs 23728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-cnfld 20092  df-clm 23668  df-cvs 23729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator