MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qcvs Structured version   Visualization version   GIF version

Theorem qcvs 24671
Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.)
Hypothesis
Ref Expression
qcvs.q 𝑄 = (ringLMod‘(ℂflds ℚ))
Assertion
Ref Expression
qcvs 𝑄 ∈ ℂVec

Proof of Theorem qcvs
StepHypRef Expression
1 qsubdrg 21003 . . . . . 6 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2 drngring 20368 . . . . . . 7 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) ∈ Ring)
32adantl 482 . . . . . 6 ((ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing) → (ℂflds ℚ) ∈ Ring)
41, 3ax-mp 5 . . . . 5 (ℂflds ℚ) ∈ Ring
5 rlmlmod 20833 . . . . 5 ((ℂflds ℚ) ∈ Ring → (ringLMod‘(ℂflds ℚ)) ∈ LMod)
64, 5ax-mp 5 . . . 4 (ringLMod‘(ℂflds ℚ)) ∈ LMod
71simpri 486 . . . . 5 (ℂflds ℚ) ∈ DivRing
8 rlmsca 20828 . . . . . 6 ((ℂflds ℚ) ∈ DivRing → (ℂflds ℚ) = (Scalar‘(ringLMod‘(ℂflds ℚ))))
98eqcomd 2738 . . . . 5 ((ℂflds ℚ) ∈ DivRing → (Scalar‘(ringLMod‘(ℂflds ℚ))) = (ℂflds ℚ))
107, 9ax-mp 5 . . . 4 (Scalar‘(ringLMod‘(ℂflds ℚ))) = (ℂflds ℚ)
111simpli 484 . . . 4 ℚ ∈ (SubRing‘ℂfld)
12 eqid 2732 . . . . 5 (Scalar‘(ringLMod‘(ℂflds ℚ))) = (Scalar‘(ringLMod‘(ℂflds ℚ)))
1312isclmi 24600 . . . 4 (((ringLMod‘(ℂflds ℚ)) ∈ LMod ∧ (Scalar‘(ringLMod‘(ℂflds ℚ))) = (ℂflds ℚ) ∧ ℚ ∈ (SubRing‘ℂfld)) → (ringLMod‘(ℂflds ℚ)) ∈ ℂMod)
146, 10, 11, 13mp3an 1461 . . 3 (ringLMod‘(ℂflds ℚ)) ∈ ℂMod
15 rlmlvec 20834 . . . 4 ((ℂflds ℚ) ∈ DivRing → (ringLMod‘(ℂflds ℚ)) ∈ LVec)
167, 15ax-mp 5 . . 3 (ringLMod‘(ℂflds ℚ)) ∈ LVec
1714, 16elini 4193 . 2 (ringLMod‘(ℂflds ℚ)) ∈ (ℂMod ∩ LVec)
18 qcvs.q . 2 𝑄 = (ringLMod‘(ℂflds ℚ))
19 df-cvs 24647 . 2 ℂVec = (ℂMod ∩ LVec)
2017, 18, 193eltr4i 2846 1 𝑄 ∈ ℂVec
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  cin 3947  cfv 6543  (class class class)co 7411  cq 12934  s cress 17175  Scalarcsca 17202  Ringcrg 20058  SubRingcsubrg 20319  DivRingcdr 20361  LModclmod 20475  LVecclvec 20718  ringLModcrglmod 20788  fldccnfld 20950  ℂModcclm 24585  ℂVecccvs 24646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-fz 13487  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-0g 17389  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-grp 18824  df-minusg 18825  df-subg 19005  df-cmn 19652  df-mgp 19990  df-ur 20007  df-ring 20060  df-cring 20061  df-oppr 20154  df-dvdsr 20175  df-unit 20176  df-invr 20206  df-dvr 20219  df-subrg 20321  df-drng 20363  df-lmod 20477  df-lvec 20719  df-sra 20791  df-rgmod 20792  df-cnfld 20951  df-clm 24586  df-cvs 24647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator