| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cvsclm | Structured version Visualization version GIF version | ||
| Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) |
| Ref | Expression |
|---|---|
| cvslvec.1 | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
| Ref | Expression |
|---|---|
| cvsclm | ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvslvec.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
| 2 | df-cvs 25024 | . . . 4 ⊢ ℂVec = (ℂMod ∩ LVec) | |
| 3 | 2 | elin2 4166 | . . 3 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 LVecclvec 21009 ℂModcclm 24962 ℂVecccvs 25023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-cvs 25024 |
| This theorem is referenced by: cvsunit 25031 cvsdiv 25032 cvsmuleqdivd 25034 cvsdiveqd 25035 isncvsngp 25049 ncvsprp 25052 ncvsm1 25054 ncvsdif 25055 ncvspi 25056 ncvspds 25061 cnncvsmulassdemo 25064 ttgcontlem1 28812 |
| Copyright terms: Public domain | W3C validator |