MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsclm Structured version   Visualization version   GIF version

Theorem cvsclm 24195
Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypothesis
Ref Expression
cvslvec.1 (𝜑𝑊 ∈ ℂVec)
Assertion
Ref Expression
cvsclm (𝜑𝑊 ∈ ℂMod)

Proof of Theorem cvsclm
StepHypRef Expression
1 cvslvec.1 . 2 (𝜑𝑊 ∈ ℂVec)
2 df-cvs 24193 . . . 4 ℂVec = (ℂMod ∩ LVec)
32elin2 4127 . . 3 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
43simplbi 497 . 2 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
51, 4syl 17 1 (𝜑𝑊 ∈ ℂMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  LVecclvec 20279  ℂModcclm 24131  ℂVecccvs 24192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-cvs 24193
This theorem is referenced by:  cvsunit  24200  cvsdiv  24201  cvsmuleqdivd  24203  cvsdiveqd  24204  isncvsngp  24218  ncvsprp  24221  ncvsm1  24223  ncvsdif  24224  ncvspi  24225  ncvspds  24230  cnncvsmulassdemo  24233  ttgcontlem1  27155
  Copyright terms: Public domain W3C validator