MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsclm Structured version   Visualization version   GIF version

Theorem cvsclm 25004
Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypothesis
Ref Expression
cvslvec.1 (𝜑𝑊 ∈ ℂVec)
Assertion
Ref Expression
cvsclm (𝜑𝑊 ∈ ℂMod)

Proof of Theorem cvsclm
StepHypRef Expression
1 cvslvec.1 . 2 (𝜑𝑊 ∈ ℂVec)
2 df-cvs 25002 . . . 4 ℂVec = (ℂMod ∩ LVec)
32elin2 4192 . . 3 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
43simplbi 497 . 2 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
51, 4syl 17 1 (𝜑𝑊 ∈ ℂMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  LVecclvec 20948  ℂModcclm 24940  ℂVecccvs 25001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-in 3950  df-cvs 25002
This theorem is referenced by:  cvsunit  25009  cvsdiv  25010  cvsmuleqdivd  25012  cvsdiveqd  25013  isncvsngp  25028  ncvsprp  25031  ncvsm1  25033  ncvsdif  25034  ncvspi  25035  ncvspds  25040  cnncvsmulassdemo  25043  ttgcontlem1  28646
  Copyright terms: Public domain W3C validator