|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cvsclm | Structured version Visualization version GIF version | ||
| Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) | 
| Ref | Expression | 
|---|---|
| cvslvec.1 | ⊢ (𝜑 → 𝑊 ∈ ℂVec) | 
| Ref | Expression | 
|---|---|
| cvsclm | ⊢ (𝜑 → 𝑊 ∈ ℂMod) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cvslvec.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
| 2 | df-cvs 25158 | . . . 4 ⊢ ℂVec = (ℂMod ∩ LVec) | |
| 3 | 2 | elin2 4202 | . . 3 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) | 
| 4 | 3 | simplbi 497 | . 2 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) | 
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ ℂMod) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 LVecclvec 21102 ℂModcclm 25096 ℂVecccvs 25157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-in 3957 df-cvs 25158 | 
| This theorem is referenced by: cvsunit 25165 cvsdiv 25166 cvsmuleqdivd 25168 cvsdiveqd 25169 isncvsngp 25184 ncvsprp 25187 ncvsm1 25189 ncvsdif 25190 ncvspi 25191 ncvspds 25196 cnncvsmulassdemo 25199 ttgcontlem1 28900 | 
| Copyright terms: Public domain | W3C validator |