![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cvsclm | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvslvec.1 | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
Ref | Expression |
---|---|
cvsclm | ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvslvec.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
2 | df-cvs 25002 | . . . 4 ⊢ ℂVec = (ℂMod ∩ LVec) | |
3 | 2 | elin2 4192 | . . 3 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
4 | 3 | simplbi 497 | . 2 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 LVecclvec 20948 ℂModcclm 24940 ℂVecccvs 25001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-v 3470 df-in 3950 df-cvs 25002 |
This theorem is referenced by: cvsunit 25009 cvsdiv 25010 cvsmuleqdivd 25012 cvsdiveqd 25013 isncvsngp 25028 ncvsprp 25031 ncvsm1 25033 ncvsdif 25034 ncvspi 25035 ncvspds 25040 cnncvsmulassdemo 25043 ttgcontlem1 28646 |
Copyright terms: Public domain | W3C validator |