Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cvsclm | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a subcomplex module. (Contributed by Thierry Arnoux, 22-May-2019.) |
Ref | Expression |
---|---|
cvslvec.1 | ⊢ (𝜑 → 𝑊 ∈ ℂVec) |
Ref | Expression |
---|---|
cvsclm | ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvslvec.1 | . 2 ⊢ (𝜑 → 𝑊 ∈ ℂVec) | |
2 | df-cvs 24193 | . . . 4 ⊢ ℂVec = (ℂMod ∩ LVec) | |
3 | 2 | elin2 4127 | . . 3 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
4 | 3 | simplbi 497 | . 2 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝜑 → 𝑊 ∈ ℂMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 LVecclvec 20279 ℂModcclm 24131 ℂVecccvs 24192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-cvs 24193 |
This theorem is referenced by: cvsunit 24200 cvsdiv 24201 cvsmuleqdivd 24203 cvsdiveqd 24204 isncvsngp 24218 ncvsprp 24221 ncvsm1 24223 ncvsdif 24224 ncvspi 24225 ncvspds 24230 cnncvsmulassdemo 24233 ttgcontlem1 27155 |
Copyright terms: Public domain | W3C validator |