MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvs Structured version   Visualization version   GIF version

Theorem iscvs 24876
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.)
Assertion
Ref Expression
iscvs (π‘Š ∈ β„‚Vec ↔ (π‘Š ∈ β„‚Mod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))

Proof of Theorem iscvs
StepHypRef Expression
1 df-cvs 24873 . . 3 β„‚Vec = (β„‚Mod ∩ LVec)
21elin2 4198 . 2 (π‘Š ∈ β„‚Vec ↔ (π‘Š ∈ β„‚Mod ∧ π‘Š ∈ LVec))
3 clmlmod 24816 . . . 4 (π‘Š ∈ β„‚Mod β†’ π‘Š ∈ LMod)
4 eqid 2730 . . . . . 6 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
54islvec 20861 . . . . 5 (π‘Š ∈ LVec ↔ (π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))
65a1i 11 . . . 4 (π‘Š ∈ β„‚Mod β†’ (π‘Š ∈ LVec ↔ (π‘Š ∈ LMod ∧ (Scalarβ€˜π‘Š) ∈ DivRing)))
73, 6mpbirand 703 . . 3 (π‘Š ∈ β„‚Mod β†’ (π‘Š ∈ LVec ↔ (Scalarβ€˜π‘Š) ∈ DivRing))
87pm5.32i 573 . 2 ((π‘Š ∈ β„‚Mod ∧ π‘Š ∈ LVec) ↔ (π‘Š ∈ β„‚Mod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))
92, 8bitri 274 1 (π‘Š ∈ β„‚Vec ↔ (π‘Š ∈ β„‚Mod ∧ (Scalarβ€˜π‘Š) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 394   ∈ wcel 2104  β€˜cfv 6544  Scalarcsca 17206  DivRingcdr 20502  LModclmod 20616  LVecclvec 20859  β„‚Modcclm 24811  β„‚Vecccvs 24872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7416  df-lvec 20860  df-clm 24812  df-cvs 24873
This theorem is referenced by:  iscvsp  24877
  Copyright terms: Public domain W3C validator