![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscvs | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.) |
Ref | Expression |
---|---|
iscvs | β’ (π β βVec β (π β βMod β§ (Scalarβπ) β DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cvs 24873 | . . 3 β’ βVec = (βMod β© LVec) | |
2 | 1 | elin2 4198 | . 2 β’ (π β βVec β (π β βMod β§ π β LVec)) |
3 | clmlmod 24816 | . . . 4 β’ (π β βMod β π β LMod) | |
4 | eqid 2730 | . . . . . 6 β’ (Scalarβπ) = (Scalarβπ) | |
5 | 4 | islvec 20861 | . . . . 5 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
6 | 5 | a1i 11 | . . . 4 β’ (π β βMod β (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing))) |
7 | 3, 6 | mpbirand 703 | . . 3 β’ (π β βMod β (π β LVec β (Scalarβπ) β DivRing)) |
8 | 7 | pm5.32i 573 | . 2 β’ ((π β βMod β§ π β LVec) β (π β βMod β§ (Scalarβπ) β DivRing)) |
9 | 2, 8 | bitri 274 | 1 β’ (π β βVec β (π β βMod β§ (Scalarβπ) β DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 394 β wcel 2104 βcfv 6544 Scalarcsca 17206 DivRingcdr 20502 LModclmod 20616 LVecclvec 20859 βModcclm 24811 βVecccvs 24872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-rab 3431 df-v 3474 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 df-lvec 20860 df-clm 24812 df-cvs 24873 |
This theorem is referenced by: iscvsp 24877 |
Copyright terms: Public domain | W3C validator |