MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvs Structured version   Visualization version   GIF version

Theorem iscvs 25027
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.)
Assertion
Ref Expression
iscvs (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))

Proof of Theorem iscvs
StepHypRef Expression
1 df-cvs 25024 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4166 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 clmlmod 24967 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
4 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54islvec 21011 . . . . 5 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
65a1i 11 . . . 4 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)))
73, 6mpbirand 707 . . 3 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (Scalar‘𝑊) ∈ DivRing))
87pm5.32i 574 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
92, 8bitri 275 1 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cfv 6511  Scalarcsca 17223  DivRingcdr 20638  LModclmod 20766  LVecclvec 21009  ℂModcclm 24962  ℂVecccvs 25023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-lvec 21010  df-clm 24963  df-cvs 25024
This theorem is referenced by:  iscvsp  25028
  Copyright terms: Public domain W3C validator