![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscvs | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.) |
Ref | Expression |
---|---|
iscvs | ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cvs 25176 | . . 3 ⊢ ℂVec = (ℂMod ∩ LVec) | |
2 | 1 | elin2 4226 | . 2 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
3 | clmlmod 25119 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
4 | eqid 2740 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | 4 | islvec 21126 | . . . . 5 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))) |
7 | 3, 6 | mpbirand 706 | . . 3 ⊢ (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (Scalar‘𝑊) ∈ DivRing)) |
8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
9 | 2, 8 | bitri 275 | 1 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 DivRingcdr 20751 LModclmod 20880 LVecclvec 21124 ℂModcclm 25114 ℂVecccvs 25175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-lvec 21125 df-clm 25115 df-cvs 25176 |
This theorem is referenced by: iscvsp 25180 |
Copyright terms: Public domain | W3C validator |