MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvs Structured version   Visualization version   GIF version

Theorem iscvs 23725
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.)
Assertion
Ref Expression
iscvs (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))

Proof of Theorem iscvs
StepHypRef Expression
1 df-cvs 23722 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4173 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 clmlmod 23665 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
4 eqid 2821 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54islvec 19870 . . . . 5 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
65a1i 11 . . . 4 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)))
73, 6mpbirand 705 . . 3 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (Scalar‘𝑊) ∈ DivRing))
87pm5.32i 577 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
92, 8bitri 277 1 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wcel 2110  cfv 6349  Scalarcsca 16562  DivRingcdr 19496  LModclmod 19628  LVecclvec 19868  ℂModcclm 23660  ℂVecccvs 23721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-nul 5202
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-iota 6308  df-fv 6357  df-ov 7153  df-lvec 19869  df-clm 23661  df-cvs 23722
This theorem is referenced by:  iscvsp  23726
  Copyright terms: Public domain W3C validator