Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscvs | Structured version Visualization version GIF version |
Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.) |
Ref | Expression |
---|---|
iscvs | ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cvs 24285 | . . 3 ⊢ ℂVec = (ℂMod ∩ LVec) | |
2 | 1 | elin2 4136 | . 2 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec)) |
3 | clmlmod 24228 | . . . 4 ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | |
4 | eqid 2740 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
5 | 4 | islvec 20364 | . . . . 5 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))) |
7 | 3, 6 | mpbirand 704 | . . 3 ⊢ (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (Scalar‘𝑊) ∈ DivRing)) |
8 | 7 | pm5.32i 575 | . 2 ⊢ ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
9 | 2, 8 | bitri 274 | 1 ⊢ (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 ‘cfv 6432 Scalarcsca 16963 DivRingcdr 19989 LModclmod 20121 LVecclvec 20362 ℂModcclm 24223 ℂVecccvs 24284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-nul 5234 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-iota 6390 df-fv 6440 df-ov 7274 df-lvec 20363 df-clm 24224 df-cvs 24285 |
This theorem is referenced by: iscvsp 24289 |
Copyright terms: Public domain | W3C validator |