Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscvs Structured version   Visualization version   GIF version

Theorem iscvs 23728
 Description: A subcomplex vector space is a subcomplex module over a division ring. For example, the subcomplex modules over the rational or real or complex numbers are subcomplex vector spaces. (Contributed by AV, 4-Oct-2021.)
Assertion
Ref Expression
iscvs (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))

Proof of Theorem iscvs
StepHypRef Expression
1 df-cvs 23725 . . 3 ℂVec = (ℂMod ∩ LVec)
21elin2 4158 . 2 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec))
3 clmlmod 23668 . . . 4 (𝑊 ∈ ℂMod → 𝑊 ∈ LMod)
4 eqid 2824 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
54islvec 19869 . . . . 5 (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing))
65a1i 11 . . . 4 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ DivRing)))
73, 6mpbirand 706 . . 3 (𝑊 ∈ ℂMod → (𝑊 ∈ LVec ↔ (Scalar‘𝑊) ∈ DivRing))
87pm5.32i 578 . 2 ((𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec) ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
92, 8bitri 278 1 (𝑊 ∈ ℂVec ↔ (𝑊 ∈ ℂMod ∧ (Scalar‘𝑊) ∈ DivRing))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∈ wcel 2115  ‘cfv 6343  Scalarcsca 16564  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867  ℂModcclm 23663  ℂVecccvs 23724 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-nul 5196 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-br 5053  df-iota 6302  df-fv 6351  df-ov 7148  df-lvec 19868  df-clm 23664  df-cvs 23725 This theorem is referenced by:  iscvsp  23729
 Copyright terms: Public domain W3C validator