Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-finxp Structured version   Visualization version   GIF version

Definition df-finxp 37377
Description: Define Cartesian exponentiation on a class.

Note that this definition is limited to finite exponents, since it is defined using nested ordered pairs. If tuples of infinite length are needed, or if they might be needed in the future, use df-ixp 8832 or df-map 8762 instead. The main advantage of this definition is that it integrates better with functions and relations. For example if 𝑅 is a subset of (𝐴↑↑2o), then df-br 5096 can be used on it, and df-fv 6494 can also be used, and so on.

It's also worth keeping in mind that ((𝑈↑↑𝑀) × (𝑈↑↑𝑁)) is generally not equal to (𝑈↑↑(𝑀 +o 𝑁)).

This definition is technical. Use finxp1o 37385 and finxpsuc 37391 for a more standard recursive experience. (Contributed by ML, 16-Oct-2020.)

Assertion
Ref Expression
df-finxp (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
Distinct variable groups:   𝑈,𝑛,𝑥,𝑦   𝑛,𝑁,𝑥,𝑦

Detailed syntax breakdown of Definition df-finxp
StepHypRef Expression
1 cU . . 3 class 𝑈
2 cN . . 3 class 𝑁
31, 2cfinxp 37376 . 2 class (𝑈↑↑𝑁)
4 com 7806 . . . . 5 class ω
52, 4wcel 2109 . . . 4 wff 𝑁 ∈ ω
6 c0 4286 . . . . 5 class
7 vn . . . . . . . 8 setvar 𝑛
8 vx . . . . . . . 8 setvar 𝑥
9 cvv 3438 . . . . . . . 8 class V
107cv 1539 . . . . . . . . . . 11 class 𝑛
11 c1o 8388 . . . . . . . . . . 11 class 1o
1210, 11wceq 1540 . . . . . . . . . 10 wff 𝑛 = 1o
138cv 1539 . . . . . . . . . . 11 class 𝑥
1413, 1wcel 2109 . . . . . . . . . 10 wff 𝑥𝑈
1512, 14wa 395 . . . . . . . . 9 wff (𝑛 = 1o𝑥𝑈)
169, 1cxp 5621 . . . . . . . . . . 11 class (V × 𝑈)
1713, 16wcel 2109 . . . . . . . . . 10 wff 𝑥 ∈ (V × 𝑈)
1810cuni 4861 . . . . . . . . . . 11 class 𝑛
19 c1st 7929 . . . . . . . . . . . 12 class 1st
2013, 19cfv 6486 . . . . . . . . . . 11 class (1st𝑥)
2118, 20cop 4585 . . . . . . . . . 10 class 𝑛, (1st𝑥)⟩
2210, 13cop 4585 . . . . . . . . . 10 class 𝑛, 𝑥
2317, 21, 22cif 4478 . . . . . . . . 9 class if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)
2415, 6, 23cif 4478 . . . . . . . 8 class if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
257, 8, 4, 9, 24cmpo 7355 . . . . . . 7 class (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
26 vy . . . . . . . . 9 setvar 𝑦
2726cv 1539 . . . . . . . 8 class 𝑦
282, 27cop 4585 . . . . . . 7 class 𝑁, 𝑦
2925, 28crdg 8338 . . . . . 6 class rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)
302, 29cfv 6486 . . . . 5 class (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)
316, 30wceq 1540 . . . 4 wff ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)
325, 31wa 395 . . 3 wff (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))
3332, 26cab 2707 . 2 class {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
343, 33wceq 1540 1 wff (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
Colors of variables: wff setvar class
This definition is referenced by:  dffinxpf  37378  finxpeq1  37379  finxpeq2  37380  csbfinxpg  37381  finxp0  37384  finxp1o  37385  finxpnom  37394
  Copyright terms: Public domain W3C validator