Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-finxp Structured version   Visualization version   GIF version

Definition df-finxp 37350
Description: Define Cartesian exponentiation on a class.

Note that this definition is limited to finite exponents, since it is defined using nested ordered pairs. If tuples of infinite length are needed, or if they might be needed in the future, use df-ixp 8956 or df-map 8886 instead. The main advantage of this definition is that it integrates better with functions and relations. For example if 𝑅 is a subset of (𝐴↑↑2o), then df-br 5167 can be used on it, and df-fv 6581 can also be used, and so on.

It's also worth keeping in mind that ((𝑈↑↑𝑀) × (𝑈↑↑𝑁)) is generally not equal to (𝑈↑↑(𝑀 +o 𝑁)).

This definition is technical. Use finxp1o 37358 and finxpsuc 37364 for a more standard recursive experience. (Contributed by ML, 16-Oct-2020.)

Assertion
Ref Expression
df-finxp (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
Distinct variable groups:   𝑈,𝑛,𝑥,𝑦   𝑛,𝑁,𝑥,𝑦

Detailed syntax breakdown of Definition df-finxp
StepHypRef Expression
1 cU . . 3 class 𝑈
2 cN . . 3 class 𝑁
31, 2cfinxp 37349 . 2 class (𝑈↑↑𝑁)
4 com 7903 . . . . 5 class ω
52, 4wcel 2108 . . . 4 wff 𝑁 ∈ ω
6 c0 4352 . . . . 5 class
7 vn . . . . . . . 8 setvar 𝑛
8 vx . . . . . . . 8 setvar 𝑥
9 cvv 3488 . . . . . . . 8 class V
107cv 1536 . . . . . . . . . . 11 class 𝑛
11 c1o 8515 . . . . . . . . . . 11 class 1o
1210, 11wceq 1537 . . . . . . . . . 10 wff 𝑛 = 1o
138cv 1536 . . . . . . . . . . 11 class 𝑥
1413, 1wcel 2108 . . . . . . . . . 10 wff 𝑥𝑈
1512, 14wa 395 . . . . . . . . 9 wff (𝑛 = 1o𝑥𝑈)
169, 1cxp 5698 . . . . . . . . . . 11 class (V × 𝑈)
1713, 16wcel 2108 . . . . . . . . . 10 wff 𝑥 ∈ (V × 𝑈)
1810cuni 4931 . . . . . . . . . . 11 class 𝑛
19 c1st 8028 . . . . . . . . . . . 12 class 1st
2013, 19cfv 6573 . . . . . . . . . . 11 class (1st𝑥)
2118, 20cop 4654 . . . . . . . . . 10 class 𝑛, (1st𝑥)⟩
2210, 13cop 4654 . . . . . . . . . 10 class 𝑛, 𝑥
2317, 21, 22cif 4548 . . . . . . . . 9 class if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)
2415, 6, 23cif 4548 . . . . . . . 8 class if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
257, 8, 4, 9, 24cmpo 7450 . . . . . . 7 class (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
26 vy . . . . . . . . 9 setvar 𝑦
2726cv 1536 . . . . . . . 8 class 𝑦
282, 27cop 4654 . . . . . . 7 class 𝑁, 𝑦
2925, 28crdg 8465 . . . . . 6 class rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)
302, 29cfv 6573 . . . . 5 class (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)
316, 30wceq 1537 . . . 4 wff ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)
325, 31wa 395 . . 3 wff (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))
3332, 26cab 2717 . 2 class {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
343, 33wceq 1537 1 wff (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
Colors of variables: wff setvar class
This definition is referenced by:  dffinxpf  37351  finxpeq1  37352  finxpeq2  37353  csbfinxpg  37354  finxp0  37357  finxp1o  37358  finxpnom  37367
  Copyright terms: Public domain W3C validator