Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp1o Structured version   Visualization version   GIF version

Theorem finxp1o 34960
 Description: The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxp1o (𝑈↑↑1o) = 𝑈

Proof of Theorem finxp1o
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 8266 . . . . . 6 1o ∈ ω
21a1i 11 . . . . 5 (𝑦𝑈 → 1o ∈ ω)
3 finxpreclem1 34957 . . . . . 6 (𝑦𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
4 1on 8110 . . . . . . . 8 1o ∈ On
5 1n0 8120 . . . . . . . 8 1o ≠ ∅
6 nnlim 7586 . . . . . . . . 9 (1o ∈ ω → ¬ Lim 1o)
71, 6ax-mp 5 . . . . . . . 8 ¬ Lim 1o
8 rdgsucuni 34937 . . . . . . . 8 ((1o ∈ On ∧ 1o ≠ ∅ ∧ ¬ Lim 1o) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o)))
94, 5, 7, 8mp3an 1458 . . . . . . 7 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o))
10 df-1o 8103 . . . . . . . . . . . 12 1o = suc ∅
1110unieqi 4817 . . . . . . . . . . 11 1o = suc ∅
12 0elon 6219 . . . . . . . . . . . 12 ∅ ∈ On
1312onunisuci 6280 . . . . . . . . . . 11 suc ∅ = ∅
1411, 13eqtri 2821 . . . . . . . . . 10 1o = ∅
1514fveq2i 6658 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘∅)
16 opex 5325 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
1716rdg0 8058 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘∅) = ⟨1o, 𝑦
1815, 17eqtri 2821 . . . . . . . 8 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o) = ⟨1o, 𝑦
1918fveq2i 6658 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o)) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩)
209, 19eqtri 2821 . . . . . 6 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩)
213, 20eqtr4di 2851 . . . . 5 (𝑦𝑈 → ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
22 df-finxp 34952 . . . . . 6 (𝑈↑↑1o) = {𝑦 ∣ (1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))}
2322abeq2i 2925 . . . . 5 (𝑦 ∈ (𝑈↑↑1o) ↔ (1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o)))
242, 21, 23sylanbrc 586 . . . 4 (𝑦𝑈𝑦 ∈ (𝑈↑↑1o))
251, 23mpbiran 708 . . . . 5 (𝑦 ∈ (𝑈↑↑1o) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
26 vex 3445 . . . . . . 7 𝑦 ∈ V
2720eqcomi 2807 . . . . . . . . . 10 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o)
28 finxpreclem2 34958 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
2928neqned 2994 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
3029necomd 3042 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩) ≠ ∅)
3127, 30eqnetrrid 3062 . . . . . . . . 9 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) ≠ ∅)
3231necomd 3042 . . . . . . . 8 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3332neneqd 2992 . . . . . . 7 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3426, 33mpan 689 . . . . . 6 𝑦𝑈 → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3534con4i 114 . . . . 5 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) → 𝑦𝑈)
3625, 35sylbi 220 . . . 4 (𝑦 ∈ (𝑈↑↑1o) → 𝑦𝑈)
3724, 36impbii 212 . . 3 (𝑦𝑈𝑦 ∈ (𝑈↑↑1o))
3837eqriv 2795 . 2 𝑈 = (𝑈↑↑1o)
3938eqcomi 2807 1 (𝑈↑↑1o) = 𝑈
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  Vcvv 3442  ∅c0 4246  ifcif 4428  ⟨cop 4534  ∪ cuni 4804   × cxp 5521  Oncon0 6166  Lim wlim 6167  suc csuc 6168  ‘cfv 6332   ∈ cmpo 7147  ωcom 7573  1st c1st 7682  reccrdg 8046  1oc1o 8096  ↑↑cfinxp 34951 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-finxp 34952 This theorem is referenced by:  finxp2o  34967  finxp00  34970
 Copyright terms: Public domain W3C validator