Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp1o Structured version   Visualization version   GIF version

Theorem finxp1o 37415
Description: The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxp1o (𝑈↑↑1o) = 𝑈

Proof of Theorem finxp1o
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 8657 . . . . . 6 1o ∈ ω
21a1i 11 . . . . 5 (𝑦𝑈 → 1o ∈ ω)
3 finxpreclem1 37412 . . . . . 6 (𝑦𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
4 1on 8497 . . . . . . . 8 1o ∈ On
5 1n0 8505 . . . . . . . 8 1o ≠ ∅
6 nnlim 7880 . . . . . . . . 9 (1o ∈ ω → ¬ Lim 1o)
71, 6ax-mp 5 . . . . . . . 8 ¬ Lim 1o
8 rdgsucuni 37392 . . . . . . . 8 ((1o ∈ On ∧ 1o ≠ ∅ ∧ ¬ Lim 1o) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o)))
94, 5, 7, 8mp3an 1463 . . . . . . 7 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o))
10 df-1o 8485 . . . . . . . . . . . 12 1o = suc ∅
1110unieqi 4900 . . . . . . . . . . 11 1o = suc ∅
12 0elon 6412 . . . . . . . . . . . 12 ∅ ∈ On
1312onunisuci 6479 . . . . . . . . . . 11 suc ∅ = ∅
1411, 13eqtri 2759 . . . . . . . . . 10 1o = ∅
1514fveq2i 6884 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘∅)
16 opex 5444 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
1716rdg0 8440 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘∅) = ⟨1o, 𝑦
1815, 17eqtri 2759 . . . . . . . 8 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o) = ⟨1o, 𝑦
1918fveq2i 6884 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o)) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩)
209, 19eqtri 2759 . . . . . 6 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩)
213, 20eqtr4di 2789 . . . . 5 (𝑦𝑈 → ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
22 df-finxp 37407 . . . . . 6 (𝑈↑↑1o) = {𝑦 ∣ (1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))}
2322eqabri 2879 . . . . 5 (𝑦 ∈ (𝑈↑↑1o) ↔ (1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o)))
242, 21, 23sylanbrc 583 . . . 4 (𝑦𝑈𝑦 ∈ (𝑈↑↑1o))
251, 23mpbiran 709 . . . . 5 (𝑦 ∈ (𝑈↑↑1o) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
26 vex 3468 . . . . . . 7 𝑦 ∈ V
2720eqcomi 2745 . . . . . . . . . 10 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o)
28 finxpreclem2 37413 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
2928neqned 2940 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
3029necomd 2988 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩) ≠ ∅)
3127, 30eqnetrrid 3008 . . . . . . . . 9 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) ≠ ∅)
3231necomd 2988 . . . . . . . 8 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3332neneqd 2938 . . . . . . 7 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3426, 33mpan 690 . . . . . 6 𝑦𝑈 → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3534con4i 114 . . . . 5 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) → 𝑦𝑈)
3625, 35sylbi 217 . . . 4 (𝑦 ∈ (𝑈↑↑1o) → 𝑦𝑈)
3724, 36impbii 209 . . 3 (𝑦𝑈𝑦 ∈ (𝑈↑↑1o))
3837eqriv 2733 . 2 𝑈 = (𝑈↑↑1o)
3938eqcomi 2745 1 (𝑈↑↑1o) = 𝑈
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  c0 4313  ifcif 4505  cop 4612   cuni 4888   × cxp 5657  Oncon0 6357  Lim wlim 6358  suc csuc 6359  cfv 6536  cmpo 7412  ωcom 7866  1st c1st 7991  reccrdg 8428  1oc1o 8478  ↑↑cfinxp 37406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-finxp 37407
This theorem is referenced by:  finxp2o  37422  finxp00  37425
  Copyright terms: Public domain W3C validator