| Step | Hyp | Ref
| Expression |
| 1 | | 1onn 8679 |
. . . . . 6
⊢
1o ∈ ω |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝑦 ∈ 𝑈 → 1o ∈
ω) |
| 3 | | finxpreclem1 37391 |
. . . . . 6
⊢ (𝑦 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉)) |
| 4 | | 1on 8519 |
. . . . . . . 8
⊢
1o ∈ On |
| 5 | | 1n0 8527 |
. . . . . . . 8
⊢
1o ≠ ∅ |
| 6 | | nnlim 7902 |
. . . . . . . . 9
⊢
(1o ∈ ω → ¬ Lim
1o) |
| 7 | 1, 6 | ax-mp 5 |
. . . . . . . 8
⊢ ¬
Lim 1o |
| 8 | | rdgsucuni 37371 |
. . . . . . . 8
⊢
((1o ∈ On ∧ 1o ≠ ∅ ∧ ¬
Lim 1o) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) =
((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o))) |
| 9 | 4, 5, 7, 8 | mp3an 1462 |
. . . . . . 7
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) =
((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o)) |
| 10 | | df-1o 8507 |
. . . . . . . . . . . 12
⊢
1o = suc ∅ |
| 11 | 10 | unieqi 4918 |
. . . . . . . . . . 11
⊢ ∪ 1o = ∪ suc
∅ |
| 12 | | 0elon 6437 |
. . . . . . . . . . . 12
⊢ ∅
∈ On |
| 13 | 12 | onunisuci 6503 |
. . . . . . . . . . 11
⊢ ∪ suc ∅ = ∅ |
| 14 | 11, 13 | eqtri 2764 |
. . . . . . . . . 10
⊢ ∪ 1o = ∅ |
| 15 | 14 | fveq2i 6908 |
. . . . . . . . 9
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∅) |
| 16 | | opex 5468 |
. . . . . . . . . 10
⊢
〈1o, 𝑦〉 ∈ V |
| 17 | 16 | rdg0 8462 |
. . . . . . . . 9
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∅) =
〈1o, 𝑦〉 |
| 18 | 15, 17 | eqtri 2764 |
. . . . . . . 8
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o) = 〈1o, 𝑦〉 |
| 19 | 18 | fveq2i 6908 |
. . . . . . 7
⊢ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o)) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) |
| 20 | 9, 19 | eqtri 2764 |
. . . . . 6
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) =
((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) |
| 21 | 3, 20 | eqtr4di 2794 |
. . . . 5
⊢ (𝑦 ∈ 𝑈 → ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
| 22 | | df-finxp 37386 |
. . . . . 6
⊢ (𝑈↑↑1o) =
{𝑦 ∣ (1o
∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o))} |
| 23 | 22 | eqabri 2884 |
. . . . 5
⊢ (𝑦 ∈ (𝑈↑↑1o) ↔
(1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o))) |
| 24 | 2, 21, 23 | sylanbrc 583 |
. . . 4
⊢ (𝑦 ∈ 𝑈 → 𝑦 ∈ (𝑈↑↑1o)) |
| 25 | 1, 23 | mpbiran 709 |
. . . . 5
⊢ (𝑦 ∈ (𝑈↑↑1o) ↔ ∅ =
(rec((𝑛 ∈ ω,
𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
| 26 | | vex 3483 |
. . . . . . 7
⊢ 𝑦 ∈ V |
| 27 | 20 | eqcomi 2745 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) |
| 28 | | finxpreclem2 37392 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉)) |
| 29 | 28 | neqned 2946 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉)) |
| 30 | 29 | necomd 2995 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) ≠
∅) |
| 31 | 27, 30 | eqnetrrid 3015 |
. . . . . . . . 9
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)
≠ ∅) |
| 32 | 31 | necomd 2995 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ∅ ≠ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
| 33 | 32 | neneqd 2944 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
| 34 | 26, 33 | mpan 690 |
. . . . . 6
⊢ (¬
𝑦 ∈ 𝑈 → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
| 35 | 34 | con4i 114 |
. . . . 5
⊢ (∅
= (rec((𝑛 ∈ ω,
𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)
→ 𝑦 ∈ 𝑈) |
| 36 | 25, 35 | sylbi 217 |
. . . 4
⊢ (𝑦 ∈ (𝑈↑↑1o) → 𝑦 ∈ 𝑈) |
| 37 | 24, 36 | impbii 209 |
. . 3
⊢ (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ (𝑈↑↑1o)) |
| 38 | 37 | eqriv 2733 |
. 2
⊢ 𝑈 = (𝑈↑↑1o) |
| 39 | 38 | eqcomi 2745 |
1
⊢ (𝑈↑↑1o) =
𝑈 |