Step | Hyp | Ref
| Expression |
1 | | 1onn 8432 |
. . . . . 6
⊢
1o ∈ ω |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝑦 ∈ 𝑈 → 1o ∈
ω) |
3 | | finxpreclem1 35487 |
. . . . . 6
⊢ (𝑦 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉)) |
4 | | 1on 8274 |
. . . . . . . 8
⊢
1o ∈ On |
5 | | 1n0 8286 |
. . . . . . . 8
⊢
1o ≠ ∅ |
6 | | nnlim 7701 |
. . . . . . . . 9
⊢
(1o ∈ ω → ¬ Lim
1o) |
7 | 1, 6 | ax-mp 5 |
. . . . . . . 8
⊢ ¬
Lim 1o |
8 | | rdgsucuni 35467 |
. . . . . . . 8
⊢
((1o ∈ On ∧ 1o ≠ ∅ ∧ ¬
Lim 1o) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) =
((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o))) |
9 | 4, 5, 7, 8 | mp3an 1459 |
. . . . . . 7
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) =
((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o)) |
10 | | df-1o 8267 |
. . . . . . . . . . . 12
⊢
1o = suc ∅ |
11 | 10 | unieqi 4849 |
. . . . . . . . . . 11
⊢ ∪ 1o = ∪ suc
∅ |
12 | | 0elon 6304 |
. . . . . . . . . . . 12
⊢ ∅
∈ On |
13 | 12 | onunisuci 6365 |
. . . . . . . . . . 11
⊢ ∪ suc ∅ = ∅ |
14 | 11, 13 | eqtri 2766 |
. . . . . . . . . 10
⊢ ∪ 1o = ∅ |
15 | 14 | fveq2i 6759 |
. . . . . . . . 9
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∅) |
16 | | opex 5373 |
. . . . . . . . . 10
⊢
〈1o, 𝑦〉 ∈ V |
17 | 16 | rdg0 8223 |
. . . . . . . . 9
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∅) =
〈1o, 𝑦〉 |
18 | 15, 17 | eqtri 2766 |
. . . . . . . 8
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o) = 〈1o, 𝑦〉 |
19 | 18 | fveq2i 6759 |
. . . . . . 7
⊢ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘∪ 1o)) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) |
20 | 9, 19 | eqtri 2766 |
. . . . . 6
⊢
(rec((𝑛 ∈
ω, 𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) =
((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) |
21 | 3, 20 | eqtr4di 2797 |
. . . . 5
⊢ (𝑦 ∈ 𝑈 → ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
22 | | df-finxp 35482 |
. . . . . 6
⊢ (𝑈↑↑1o) =
{𝑦 ∣ (1o
∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o))} |
23 | 22 | abeq2i 2874 |
. . . . 5
⊢ (𝑦 ∈ (𝑈↑↑1o) ↔
(1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o))) |
24 | 2, 21, 23 | sylanbrc 582 |
. . . 4
⊢ (𝑦 ∈ 𝑈 → 𝑦 ∈ (𝑈↑↑1o)) |
25 | 1, 23 | mpbiran 705 |
. . . . 5
⊢ (𝑦 ∈ (𝑈↑↑1o) ↔ ∅ =
(rec((𝑛 ∈ ω,
𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
26 | | vex 3426 |
. . . . . . 7
⊢ 𝑦 ∈ V |
27 | 20 | eqcomi 2747 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o) |
28 | | finxpreclem2 35488 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉)) |
29 | 28 | neqned 2949 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉)) |
30 | 29 | necomd 2998 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑦〉) ≠
∅) |
31 | 27, 30 | eqnetrrid 3018 |
. . . . . . . . 9
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)
≠ ∅) |
32 | 31 | necomd 2998 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ∅ ≠ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
33 | 32 | neneqd 2947 |
. . . . . . 7
⊢ ((𝑦 ∈ V ∧ ¬ 𝑦 ∈ 𝑈) → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
34 | 26, 33 | mpan 686 |
. . . . . 6
⊢ (¬
𝑦 ∈ 𝑈 → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)) |
35 | 34 | con4i 114 |
. . . . 5
⊢ (∅
= (rec((𝑛 ∈ ω,
𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈1o, 𝑦〉)‘1o)
→ 𝑦 ∈ 𝑈) |
36 | 25, 35 | sylbi 216 |
. . . 4
⊢ (𝑦 ∈ (𝑈↑↑1o) → 𝑦 ∈ 𝑈) |
37 | 24, 36 | impbii 208 |
. . 3
⊢ (𝑦 ∈ 𝑈 ↔ 𝑦 ∈ (𝑈↑↑1o)) |
38 | 37 | eqriv 2735 |
. 2
⊢ 𝑈 = (𝑈↑↑1o) |
39 | 38 | eqcomi 2747 |
1
⊢ (𝑈↑↑1o) =
𝑈 |