Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp1o Structured version   Visualization version   GIF version

Theorem finxp1o 37425
Description: The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxp1o (𝑈↑↑1o) = 𝑈

Proof of Theorem finxp1o
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 8555 . . . . . 6 1o ∈ ω
21a1i 11 . . . . 5 (𝑦𝑈 → 1o ∈ ω)
3 finxpreclem1 37422 . . . . . 6 (𝑦𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
4 1on 8397 . . . . . . . 8 1o ∈ On
5 1n0 8403 . . . . . . . 8 1o ≠ ∅
6 nnlim 7810 . . . . . . . . 9 (1o ∈ ω → ¬ Lim 1o)
71, 6ax-mp 5 . . . . . . . 8 ¬ Lim 1o
8 rdgsucuni 37402 . . . . . . . 8 ((1o ∈ On ∧ 1o ≠ ∅ ∧ ¬ Lim 1o) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o)))
94, 5, 7, 8mp3an 1463 . . . . . . 7 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o))
10 df-1o 8385 . . . . . . . . . . . 12 1o = suc ∅
1110unieqi 4871 . . . . . . . . . . 11 1o = suc ∅
12 0elon 6361 . . . . . . . . . . . 12 ∅ ∈ On
1312onunisuci 6427 . . . . . . . . . . 11 suc ∅ = ∅
1411, 13eqtri 2754 . . . . . . . . . 10 1o = ∅
1514fveq2i 6825 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘∅)
16 opex 5404 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
1716rdg0 8340 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘∅) = ⟨1o, 𝑦
1815, 17eqtri 2754 . . . . . . . 8 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o) = ⟨1o, 𝑦
1918fveq2i 6825 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘ 1o)) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩)
209, 19eqtri 2754 . . . . . 6 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩)
213, 20eqtr4di 2784 . . . . 5 (𝑦𝑈 → ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
22 df-finxp 37417 . . . . . 6 (𝑈↑↑1o) = {𝑦 ∣ (1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))}
2322eqabri 2874 . . . . 5 (𝑦 ∈ (𝑈↑↑1o) ↔ (1o ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o)))
242, 21, 23sylanbrc 583 . . . 4 (𝑦𝑈𝑦 ∈ (𝑈↑↑1o))
251, 23mpbiran 709 . . . . 5 (𝑦 ∈ (𝑈↑↑1o) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
26 vex 3440 . . . . . . 7 𝑦 ∈ V
2720eqcomi 2740 . . . . . . . . . 10 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o)
28 finxpreclem2 37423 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
2928neqned 2935 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩))
3029necomd 2983 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑦⟩) ≠ ∅)
3127, 30eqnetrrid 3003 . . . . . . . . 9 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) ≠ ∅)
3231necomd 2983 . . . . . . . 8 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3332neneqd 2933 . . . . . . 7 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3426, 33mpan 690 . . . . . 6 𝑦𝑈 → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o))
3534con4i 114 . . . . 5 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1o, 𝑦⟩)‘1o) → 𝑦𝑈)
3625, 35sylbi 217 . . . 4 (𝑦 ∈ (𝑈↑↑1o) → 𝑦𝑈)
3724, 36impbii 209 . . 3 (𝑦𝑈𝑦 ∈ (𝑈↑↑1o))
3837eqriv 2728 . 2 𝑈 = (𝑈↑↑1o)
3938eqcomi 2740 1 (𝑈↑↑1o) = 𝑈
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4283  ifcif 4475  cop 4582   cuni 4859   × cxp 5614  Oncon0 6306  Lim wlim 6307  suc csuc 6308  cfv 6481  cmpo 7348  ωcom 7796  1st c1st 7919  reccrdg 8328  1oc1o 8378  ↑↑cfinxp 37416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-finxp 37417
This theorem is referenced by:  finxp2o  37432  finxp00  37435
  Copyright terms: Public domain W3C validator