Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp1o Structured version   Visualization version   GIF version

Theorem finxp1o 33662
Description: The value of Cartesian exponentiation at one. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxp1o (𝑈↑↑1𝑜) = 𝑈

Proof of Theorem finxp1o
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1onn 7924 . . . . . 6 1𝑜 ∈ ω
21a1i 11 . . . . 5 (𝑦𝑈 → 1𝑜 ∈ ω)
3 finxpreclem1 33659 . . . . . 6 (𝑦𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩))
4 1on 7771 . . . . . . . 8 1𝑜 ∈ On
5 1n0 7780 . . . . . . . 8 1𝑜 ≠ ∅
6 nnlim 7276 . . . . . . . . 9 (1𝑜 ∈ ω → ¬ Lim 1𝑜)
71, 6ax-mp 5 . . . . . . . 8 ¬ Lim 1𝑜
8 rdgsucuni 33650 . . . . . . . 8 ((1𝑜 ∈ On ∧ 1𝑜 ≠ ∅ ∧ ¬ Lim 1𝑜) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘ 1𝑜)))
94, 5, 7, 8mp3an 1585 . . . . . . 7 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘ 1𝑜))
10 df-1o 7764 . . . . . . . . . . . 12 1𝑜 = suc ∅
1110unieqi 4603 . . . . . . . . . . 11 1𝑜 = suc ∅
12 0elon 5961 . . . . . . . . . . . 12 ∅ ∈ On
1312onunisuci 6021 . . . . . . . . . . 11 suc ∅ = ∅
1411, 13eqtri 2787 . . . . . . . . . 10 1𝑜 = ∅
1514fveq2i 6378 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘ 1𝑜) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘∅)
16 opex 5088 . . . . . . . . . 10 ⟨1𝑜, 𝑦⟩ ∈ V
1716rdg0 7721 . . . . . . . . 9 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘∅) = ⟨1𝑜, 𝑦
1815, 17eqtri 2787 . . . . . . . 8 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘ 1𝑜) = ⟨1𝑜, 𝑦
1918fveq2i 6378 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘(rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘ 1𝑜)) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩)
209, 19eqtri 2787 . . . . . 6 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩)
213, 20syl6eqr 2817 . . . . 5 (𝑦𝑈 → ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜))
22 df-finxp 33654 . . . . . 6 (𝑈↑↑1𝑜) = {𝑦 ∣ (1𝑜 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜))}
2322abeq2i 2878 . . . . 5 (𝑦 ∈ (𝑈↑↑1𝑜) ↔ (1𝑜 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜)))
242, 21, 23sylanbrc 578 . . . 4 (𝑦𝑈𝑦 ∈ (𝑈↑↑1𝑜))
251, 23mpbiran 700 . . . . 5 (𝑦 ∈ (𝑈↑↑1𝑜) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜))
26 vex 3353 . . . . . . 7 𝑦 ∈ V
2720eqcomi 2774 . . . . . . . . . 10 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜)
28 finxpreclem2 33660 . . . . . . . . . . . 12 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩))
2928neqned 2944 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩))
3029necomd 2992 . . . . . . . . . 10 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1𝑜, 𝑦⟩) ≠ ∅)
3127, 30syl5eqner 3012 . . . . . . . . 9 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜) ≠ ∅)
3231necomd 2992 . . . . . . . 8 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ∅ ≠ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜))
3332neneqd 2942 . . . . . . 7 ((𝑦 ∈ V ∧ ¬ 𝑦𝑈) → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜))
3426, 33mpan 681 . . . . . 6 𝑦𝑈 → ¬ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜))
3534con4i 114 . . . . 5 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨1𝑜, 𝑦⟩)‘1𝑜) → 𝑦𝑈)
3625, 35sylbi 208 . . . 4 (𝑦 ∈ (𝑈↑↑1𝑜) → 𝑦𝑈)
3724, 36impbii 200 . . 3 (𝑦𝑈𝑦 ∈ (𝑈↑↑1𝑜))
3837eqriv 2762 . 2 𝑈 = (𝑈↑↑1𝑜)
3938eqcomi 2774 1 (𝑈↑↑1𝑜) = 𝑈
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1652  wcel 2155  wne 2937  Vcvv 3350  c0 4079  ifcif 4243  cop 4340   cuni 4594   × cxp 5275  Oncon0 5908  Lim wlim 5909  suc csuc 5910  cfv 6068  cmpt2 6844  ωcom 7263  1st c1st 7364  reccrdg 7709  1𝑜c1o 7757  ↑↑cfinxp 33653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-finxp 33654
This theorem is referenced by:  finxp2o  33669  finxp00  33672
  Copyright terms: Public domain W3C validator