![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpsuc | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxpsuc | ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7911 | . . . . 5 ⊢ (𝑁 ∈ ω → Ord 𝑁) | |
2 | ordge1n0 8550 | . . . . 5 ⊢ (Ord 𝑁 → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ω → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) |
4 | 3 | biimprd 248 | . . 3 ⊢ (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o ⊆ 𝑁)) |
5 | 4 | imdistani 568 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o ⊆ 𝑁)) |
6 | eqid 2740 | . . 3 ⊢ (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) | |
7 | 6 | finxpsuclem 37363 | . 2 ⊢ ((𝑁 ∈ ω ∧ 1o ⊆ 𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
8 | 5, 7 | syl 17 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ifcif 4548 〈cop 4654 ∪ cuni 4931 × cxp 5698 Ord word 6394 suc csuc 6397 ‘cfv 6573 ∈ cmpo 7450 ωcom 7903 1st c1st 8028 1oc1o 8515 ↑↑cfinxp 37349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-en 9004 df-fin 9007 df-finxp 37350 |
This theorem is referenced by: finxp2o 37365 finxp3o 37366 finxp00 37368 |
Copyright terms: Public domain | W3C validator |