| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpsuc | Structured version Visualization version GIF version | ||
| Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxpsuc | ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnord 7830 | . . . . 5 ⊢ (𝑁 ∈ ω → Ord 𝑁) | |
| 2 | ordge1n0 8435 | . . . . 5 ⊢ (Ord 𝑁 → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ω → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) |
| 4 | 3 | biimprd 248 | . . 3 ⊢ (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o ⊆ 𝑁)) |
| 5 | 4 | imdistani 568 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o ⊆ 𝑁)) |
| 6 | eqid 2729 | . . 3 ⊢ (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) | |
| 7 | 6 | finxpsuclem 37378 | . 2 ⊢ ((𝑁 ∈ ω ∧ 1o ⊆ 𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
| 8 | 5, 7 | syl 17 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 ifcif 4484 〈cop 4591 ∪ cuni 4867 × cxp 5629 Ord word 6319 suc csuc 6322 ‘cfv 6499 ∈ cmpo 7371 ωcom 7822 1st c1st 7945 1oc1o 8404 ↑↑cfinxp 37364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-en 8896 df-fin 8899 df-finxp 37365 |
| This theorem is referenced by: finxp2o 37380 finxp3o 37381 finxp00 37383 |
| Copyright terms: Public domain | W3C validator |