Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuc Structured version   Visualization version   GIF version

Theorem finxpsuc 37381
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxpsuc ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))

Proof of Theorem finxpsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnord 7895 . . . . 5 (𝑁 ∈ ω → Ord 𝑁)
2 ordge1n0 8531 . . . . 5 (Ord 𝑁 → (1o𝑁𝑁 ≠ ∅))
31, 2syl 17 . . . 4 (𝑁 ∈ ω → (1o𝑁𝑁 ≠ ∅))
43biimprd 248 . . 3 (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o𝑁))
54imdistani 568 . 2 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o𝑁))
6 eqid 2735 . . 3 (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑦, (1st𝑥)⟩, ⟨𝑦, 𝑥⟩))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑦, (1st𝑥)⟩, ⟨𝑦, 𝑥⟩)))
76finxpsuclem 37380 . 2 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
85, 7syl 17 1 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  ifcif 4531  cop 4637   cuni 4912   × cxp 5687  Ord word 6385  suc csuc 6388  cfv 6563  cmpo 7433  ωcom 7887  1st c1st 8011  1oc1o 8498  ↑↑cfinxp 37366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-en 8985  df-fin 8988  df-finxp 37367
This theorem is referenced by:  finxp2o  37382  finxp3o  37383  finxp00  37385
  Copyright terms: Public domain W3C validator