Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuc Structured version   Visualization version   GIF version

Theorem finxpsuc 35919
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxpsuc ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))

Proof of Theorem finxpsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnord 7814 . . . . 5 (𝑁 ∈ ω → Ord 𝑁)
2 ordge1n0 8444 . . . . 5 (Ord 𝑁 → (1o𝑁𝑁 ≠ ∅))
31, 2syl 17 . . . 4 (𝑁 ∈ ω → (1o𝑁𝑁 ≠ ∅))
43biimprd 248 . . 3 (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o𝑁))
54imdistani 570 . 2 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o𝑁))
6 eqid 2733 . . 3 (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑦, (1st𝑥)⟩, ⟨𝑦, 𝑥⟩))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑦, (1st𝑥)⟩, ⟨𝑦, 𝑥⟩)))
76finxpsuclem 35918 . 2 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
85, 7syl 17 1 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2940  Vcvv 3447  wss 3914  c0 4286  ifcif 4490  cop 4596   cuni 4869   × cxp 5635  Ord word 6320  suc csuc 6323  cfv 6500  cmpo 7363  ωcom 7806  1st c1st 7923  1oc1o 8409  ↑↑cfinxp 35904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-oadd 8420  df-en 8890  df-fin 8893  df-finxp 35905
This theorem is referenced by:  finxp2o  35920  finxp3o  35921  finxp00  35923
  Copyright terms: Public domain W3C validator