Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuc Structured version   Visualization version   GIF version

Theorem finxpsuc 37386
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxpsuc ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))

Proof of Theorem finxpsuc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnord 7850 . . . . 5 (𝑁 ∈ ω → Ord 𝑁)
2 ordge1n0 8458 . . . . 5 (Ord 𝑁 → (1o𝑁𝑁 ≠ ∅))
31, 2syl 17 . . . 4 (𝑁 ∈ ω → (1o𝑁𝑁 ≠ ∅))
43biimprd 248 . . 3 (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o𝑁))
54imdistani 568 . 2 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o𝑁))
6 eqid 2729 . . 3 (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑦, (1st𝑥)⟩, ⟨𝑦, 𝑥⟩))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑦, (1st𝑥)⟩, ⟨𝑦, 𝑥⟩)))
76finxpsuclem 37385 . 2 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
85, 7syl 17 1 ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  wss 3914  c0 4296  ifcif 4488  cop 4595   cuni 4871   × cxp 5636  Ord word 6331  suc csuc 6334  cfv 6511  cmpo 7389  ωcom 7842  1st c1st 7966  1oc1o 8427  ↑↑cfinxp 37371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-en 8919  df-fin 8922  df-finxp 37372
This theorem is referenced by:  finxp2o  37387  finxp3o  37388  finxp00  37390
  Copyright terms: Public domain W3C validator