![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpsuc | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxpsuc | ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7857 | . . . . 5 ⊢ (𝑁 ∈ ω → Ord 𝑁) | |
2 | ordge1n0 8490 | . . . . 5 ⊢ (Ord 𝑁 → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ω → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) |
4 | 3 | biimprd 247 | . . 3 ⊢ (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o ⊆ 𝑁)) |
5 | 4 | imdistani 568 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o ⊆ 𝑁)) |
6 | eqid 2724 | . . 3 ⊢ (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) | |
7 | 6 | finxpsuclem 36769 | . 2 ⊢ ((𝑁 ∈ ω ∧ 1o ⊆ 𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
8 | 5, 7 | syl 17 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 ⊆ wss 3941 ∅c0 4315 ifcif 4521 〈cop 4627 ∪ cuni 4900 × cxp 5665 Ord word 6354 suc csuc 6357 ‘cfv 6534 ∈ cmpo 7404 ωcom 7849 1st c1st 7967 1oc1o 8455 ↑↑cfinxp 36755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-en 8937 df-fin 8940 df-finxp 36756 |
This theorem is referenced by: finxp2o 36771 finxp3o 36772 finxp00 36774 |
Copyright terms: Public domain | W3C validator |