![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpsuc | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxpsuc | ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7862 | . . . . 5 ⊢ (𝑁 ∈ ω → Ord 𝑁) | |
2 | ordge1n0 8493 | . . . . 5 ⊢ (Ord 𝑁 → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ω → (1o ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) |
4 | 3 | biimprd 247 | . . 3 ⊢ (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1o ⊆ 𝑁)) |
5 | 4 | imdistani 569 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1o ⊆ 𝑁)) |
6 | eqid 2732 | . . 3 ⊢ (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑦, (1st ‘𝑥)⟩, ⟨𝑦, 𝑥⟩))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑦, (1st ‘𝑥)⟩, ⟨𝑦, 𝑥⟩))) | |
7 | 6 | finxpsuclem 36273 | . 2 ⊢ ((𝑁 ∈ ω ∧ 1o ⊆ 𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
8 | 5, 7 | syl 17 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 ifcif 4528 ⟨cop 4634 ∪ cuni 4908 × cxp 5674 Ord word 6363 suc csuc 6366 ‘cfv 6543 ∈ cmpo 7410 ωcom 7854 1st c1st 7972 1oc1o 8458 ↑↑cfinxp 36259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-en 8939 df-fin 8942 df-finxp 36260 |
This theorem is referenced by: finxp2o 36275 finxp3o 36276 finxp00 36278 |
Copyright terms: Public domain | W3C validator |