![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpsuc | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at a successor. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxpsuc | ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7307 | . . . . 5 ⊢ (𝑁 ∈ ω → Ord 𝑁) | |
2 | ordge1n0 7818 | . . . . 5 ⊢ (Ord 𝑁 → (1𝑜 ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ω → (1𝑜 ⊆ 𝑁 ↔ 𝑁 ≠ ∅)) |
4 | 3 | biimprd 240 | . . 3 ⊢ (𝑁 ∈ ω → (𝑁 ≠ ∅ → 1𝑜 ⊆ 𝑁)) |
5 | 4 | imdistani 565 | . 2 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑁 ∈ ω ∧ 1𝑜 ⊆ 𝑁)) |
6 | eqid 2799 | . . 3 ⊢ (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) = (𝑦 ∈ ω, 𝑥 ∈ V ↦ if((𝑦 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑦, (1st ‘𝑥)〉, 〈𝑦, 𝑥〉))) | |
7 | 6 | finxpsuclem 33732 | . 2 ⊢ ((𝑁 ∈ ω ∧ 1𝑜 ⊆ 𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
8 | 5, 7 | syl 17 | 1 ⊢ ((𝑁 ∈ ω ∧ 𝑁 ≠ ∅) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 Vcvv 3385 ⊆ wss 3769 ∅c0 4115 ifcif 4277 〈cop 4374 ∪ cuni 4628 × cxp 5310 Ord word 5940 suc csuc 5943 ‘cfv 6101 ↦ cmpt2 6880 ωcom 7299 1st c1st 7399 1𝑜c1o 7792 ↑↑cfinxp 33718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-finxp 33719 |
This theorem is referenced by: finxp2o 33734 finxp3o 33735 finxp00 33737 |
Copyright terms: Public domain | W3C validator |