Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp0 | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxp0 | ⊢ (𝑈↑↑∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
2 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 5383 | . . . 4 ⊢ 〈∅, 𝑦〉 ≠ ∅ |
4 | 3 | nesymi 3000 | . . 3 ⊢ ¬ ∅ = 〈∅, 𝑦〉 |
5 | peano1 7710 | . . . . 5 ⊢ ∅ ∈ ω | |
6 | df-finxp 35482 | . . . . . 6 ⊢ (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))} | |
7 | 6 | abeq2i 2874 | . . . . 5 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))) |
8 | 5, 7 | mpbiran 705 | . . . 4 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅)) |
9 | opex 5373 | . . . . . 6 ⊢ 〈∅, 𝑦〉 ∈ V | |
10 | 9 | rdg0 8223 | . . . . 5 ⊢ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) = 〈∅, 𝑦〉 |
11 | 10 | eqeq2i 2751 | . . . 4 ⊢ (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) ↔ ∅ = 〈∅, 𝑦〉) |
12 | 8, 11 | bitri 274 | . . 3 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = 〈∅, 𝑦〉) |
13 | 4, 12 | mtbir 322 | . 2 ⊢ ¬ 𝑦 ∈ (𝑈↑↑∅) |
14 | 13 | nel0 4281 | 1 ⊢ (𝑈↑↑∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 〈cop 4564 ∪ cuni 4836 × cxp 5578 ‘cfv 6418 ∈ cmpo 7257 ωcom 7687 1st c1st 7802 reccrdg 8211 1oc1o 8260 ↑↑cfinxp 35481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-finxp 35482 |
This theorem is referenced by: finxp00 35500 |
Copyright terms: Public domain | W3C validator |