![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp0 | Structured version Visualization version GIF version |
Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
finxp0 | ⊢ (𝑈↑↑∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5308 | . . . . 5 ⊢ ∅ ∈ V | |
2 | vex 3476 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 1, 2 | opnzi 5475 | . . . 4 ⊢ ⟨∅, 𝑦⟩ ≠ ∅ |
4 | 3 | nesymi 2996 | . . 3 ⊢ ¬ ∅ = ⟨∅, 𝑦⟩ |
5 | peano1 7883 | . . . . 5 ⊢ ∅ ∈ ω | |
6 | df-finxp 36570 | . . . . . 6 ⊢ (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))} | |
7 | 6 | eqabri 2875 | . . . . 5 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))) |
8 | 5, 7 | mpbiran 705 | . . . 4 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅)) |
9 | opex 5465 | . . . . . 6 ⊢ ⟨∅, 𝑦⟩ ∈ V | |
10 | 9 | rdg0 8425 | . . . . 5 ⊢ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) = ⟨∅, 𝑦⟩ |
11 | 10 | eqeq2i 2743 | . . . 4 ⊢ (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) ↔ ∅ = ⟨∅, 𝑦⟩) |
12 | 8, 11 | bitri 274 | . . 3 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = ⟨∅, 𝑦⟩) |
13 | 4, 12 | mtbir 322 | . 2 ⊢ ¬ 𝑦 ∈ (𝑈↑↑∅) |
14 | 13 | nel0 4351 | 1 ⊢ (𝑈↑↑∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 ifcif 4529 ⟨cop 4635 ∪ cuni 4909 × cxp 5675 ‘cfv 6544 ∈ cmpo 7415 ωcom 7859 1st c1st 7977 reccrdg 8413 1oc1o 8463 ↑↑cfinxp 36569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-finxp 36570 |
This theorem is referenced by: finxp00 36588 |
Copyright terms: Public domain | W3C validator |