| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp0 | Structured version Visualization version GIF version | ||
| Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxp0 | ⊢ (𝑈↑↑∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5417 | . . . 4 ⊢ 〈∅, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2986 | . . 3 ⊢ ¬ ∅ = 〈∅, 𝑦〉 |
| 5 | peano1 7825 | . . . . 5 ⊢ ∅ ∈ ω | |
| 6 | df-finxp 37449 | . . . . . 6 ⊢ (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))} | |
| 7 | 6 | eqabri 2875 | . . . . 5 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))) |
| 8 | 5, 7 | mpbiran 709 | . . . 4 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅)) |
| 9 | opex 5407 | . . . . . 6 ⊢ 〈∅, 𝑦〉 ∈ V | |
| 10 | 9 | rdg0 8346 | . . . . 5 ⊢ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) = 〈∅, 𝑦〉 |
| 11 | 10 | eqeq2i 2746 | . . . 4 ⊢ (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) ↔ ∅ = 〈∅, 𝑦〉) |
| 12 | 8, 11 | bitri 275 | . . 3 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = 〈∅, 𝑦〉) |
| 13 | 4, 12 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ (𝑈↑↑∅) |
| 14 | 13 | nel0 4303 | 1 ⊢ (𝑈↑↑∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ifcif 4474 〈cop 4581 ∪ cuni 4858 × cxp 5617 ‘cfv 6486 ∈ cmpo 7354 ωcom 7802 1st c1st 7925 reccrdg 8334 1oc1o 8384 ↑↑cfinxp 37448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-finxp 37449 |
| This theorem is referenced by: finxp00 37467 |
| Copyright terms: Public domain | W3C validator |