| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxp0 | Structured version Visualization version GIF version | ||
| Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxp0 | ⊢ (𝑈↑↑∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 2 | vex 3442 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5421 | . . . 4 ⊢ 〈∅, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2982 | . . 3 ⊢ ¬ ∅ = 〈∅, 𝑦〉 |
| 5 | peano1 7829 | . . . . 5 ⊢ ∅ ∈ ω | |
| 6 | df-finxp 37357 | . . . . . 6 ⊢ (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))} | |
| 7 | 6 | eqabri 2871 | . . . . 5 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅))) |
| 8 | 5, 7 | mpbiran 709 | . . . 4 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅)) |
| 9 | opex 5411 | . . . . . 6 ⊢ 〈∅, 𝑦〉 ∈ V | |
| 10 | 9 | rdg0 8350 | . . . . 5 ⊢ (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) = 〈∅, 𝑦〉 |
| 11 | 10 | eqeq2i 2742 | . . . 4 ⊢ (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈∅, 𝑦〉)‘∅) ↔ ∅ = 〈∅, 𝑦〉) |
| 12 | 8, 11 | bitri 275 | . . 3 ⊢ (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = 〈∅, 𝑦〉) |
| 13 | 4, 12 | mtbir 323 | . 2 ⊢ ¬ 𝑦 ∈ (𝑈↑↑∅) |
| 14 | 13 | nel0 4307 | 1 ⊢ (𝑈↑↑∅) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ifcif 4478 〈cop 4585 ∪ cuni 4861 × cxp 5621 ‘cfv 6486 ∈ cmpo 7355 ωcom 7806 1st c1st 7929 reccrdg 8338 1oc1o 8388 ↑↑cfinxp 37356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-finxp 37357 |
| This theorem is referenced by: finxp00 37375 |
| Copyright terms: Public domain | W3C validator |