Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxp0 Structured version   Visualization version   GIF version

Theorem finxp0 37364
Description: The value of Cartesian exponentiation at zero. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxp0 (𝑈↑↑∅) = ∅

Proof of Theorem finxp0
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5249 . . . . 5 ∅ ∈ V
2 vex 3442 . . . . 5 𝑦 ∈ V
31, 2opnzi 5421 . . . 4 ⟨∅, 𝑦⟩ ≠ ∅
43nesymi 2982 . . 3 ¬ ∅ = ⟨∅, 𝑦
5 peano1 7829 . . . . 5 ∅ ∈ ω
6 df-finxp 37357 . . . . . 6 (𝑈↑↑∅) = {𝑦 ∣ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))}
76eqabri 2871 . . . . 5 (𝑦 ∈ (𝑈↑↑∅) ↔ (∅ ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅)))
85, 7mpbiran 709 . . . 4 (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅))
9 opex 5411 . . . . . 6 ⟨∅, 𝑦⟩ ∈ V
109rdg0 8350 . . . . 5 (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) = ⟨∅, 𝑦
1110eqeq2i 2742 . . . 4 (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨∅, 𝑦⟩)‘∅) ↔ ∅ = ⟨∅, 𝑦⟩)
128, 11bitri 275 . . 3 (𝑦 ∈ (𝑈↑↑∅) ↔ ∅ = ⟨∅, 𝑦⟩)
134, 12mtbir 323 . 2 ¬ 𝑦 ∈ (𝑈↑↑∅)
1413nel0 4307 1 (𝑈↑↑∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  ifcif 4478  cop 4585   cuni 4861   × cxp 5621  cfv 6486  cmpo 7355  ωcom 7806  1st c1st 7929  reccrdg 8338  1oc1o 8388  ↑↑cfinxp 37356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-finxp 37357
This theorem is referenced by:  finxp00  37375
  Copyright terms: Public domain W3C validator