MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6507
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16094 after we define cosine in df-cos 16012). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5184 and df-mpo 7374), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 30345). Note that df-ov 7372 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6875 and fvprc 6832). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6938, dffv3 6836, fv2 6835, and fv3 6858 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6930 and funfv2 6931. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6897. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6837. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6499 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1539 . . . 4 class 𝑥
61, 5, 2wbr 5102 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6450 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1540 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6828  fveu  6829  fv2  6835  dffv3  6836  fveq1  6839  fveq2  6840  nffv  6850  fvex  6853  fvres  6859  tz6.12c  6862  tz6.12-1OLD  6864  csbfv12  6888  fvopab5  6983  ovtpos  8197  rlimdm  15493  zsum  15660  isumclim3  15701  isumshft  15781  zprod  15879  iprodclim3  15942  avril1  30365  uncov  37568  sn-tz6.12-2  42641  fvsb  44414  dfafv2  47106  rlimdmafv  47151  dfafv22  47233
  Copyright terms: Public domain W3C validator