MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6393
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 15716 after we define cosine in df-cos 15637). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5141 and df-mpo 7223), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 28531). Note that df-ov 7221 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6752 and fvprc 6714). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6811, dffv3 6718, fv2 6717, and fv3 6740 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6803 and funfv2 6804. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6773. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6719. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6385 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1542 . . . 4 class 𝑥
61, 5, 2wbr 5058 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6341 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1543 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6711  fveu  6712  fv2  6717  dffv3  6718  fveq1  6721  fveq2  6722  nffv  6732  fvex  6735  fvres  6741  tz6.12-1  6744  csbfv12  6765  fvopab5  6855  ovtpos  7988  rlimdm  15117  zsum  15287  isumclim3  15328  isumshft  15408  zprod  15504  iprodclim3  15567  avril1  28551  uncov  35500  fvsb  41751  dfafv2  44304  rlimdmafv  44349  dfafv22  44431
  Copyright terms: Public domain W3C validator