MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6538
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16166 after we define cosine in df-cos 16084). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5202 and df-mpo 7408), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 30370). Note that df-ov 7406 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6910 and fvprc 6867). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6973, dffv3 6871, fv2 6870, and fv3 6893 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6965 and funfv2 6966. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6932. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6872. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6530 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1539 . . . 4 class 𝑥
61, 5, 2wbr 5119 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6481 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1540 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6863  fveu  6864  fv2  6870  dffv3  6871  fveq1  6874  fveq2  6875  nffv  6885  fvex  6888  fvres  6894  tz6.12c  6897  tz6.12-1OLD  6899  csbfv12  6923  fvopab5  7018  ovtpos  8238  rlimdm  15565  zsum  15732  isumclim3  15773  isumshft  15853  zprod  15951  iprodclim3  16014  avril1  30390  uncov  37571  sn-tz6.12-2  42650  fvsb  44424  dfafv2  47109  rlimdmafv  47154  dfafv22  47236
  Copyright terms: Public domain W3C validator