MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6489
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16059 after we define cosine in df-cos 15977). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5171 and df-mpo 7351), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 30423). Note that df-ov 7349 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6854 and fvprc 6814). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6917, dffv3 6818, fv2 6817, and fv3 6840 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6909 and funfv2 6910. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6876. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6819. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6481 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1540 . . . 4 class 𝑥
61, 5, 2wbr 5089 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6435 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1541 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6809  tz6.12-2OLD  6810  fveu  6811  fv2  6817  dffv3  6818  fveq1  6821  fveq2  6822  nffv  6832  fvex  6835  fvres  6841  tz6.12c  6844  csbfv12  6867  fvopab5  6962  ovtpos  8171  rlimdm  15458  zsum  15625  isumclim3  15666  isumshft  15746  zprod  15844  iprodclim3  15907  avril1  30443  uncov  37649  sn-tz6.12-2  42721  fvsb  44492  dfafv2  47171  rlimdmafv  47216  dfafv22  47298
  Copyright terms: Public domain W3C validator