MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6581
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16198 after we define cosine in df-cos 16118). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5250 and df-mpo 7453), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 30475). Note that df-ov 7451 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6955 and fvprc 6912). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 7017, dffv3 6916, fv2 6915, and fv3 6938 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 7009 and funfv2 7010. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6976. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6917. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6573 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1536 . . . 4 class 𝑥
61, 5, 2wbr 5166 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6523 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1537 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6908  fveu  6909  fv2  6915  dffv3  6916  fveq1  6919  fveq2  6920  nffv  6930  fvex  6933  fvres  6939  tz6.12c  6942  tz6.12-1OLD  6944  csbfv12  6968  fvopab5  7062  ovtpos  8282  rlimdm  15597  zsum  15766  isumclim3  15807  isumshft  15887  zprod  15985  iprodclim3  16048  avril1  30495  uncov  37561  sn-tz6.12-2  42635  fvsb  44421  dfafv2  47047  rlimdmafv  47092  dfafv22  47174
  Copyright terms: Public domain W3C validator