MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6415
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 15754 after we define cosine in df-cos 15675). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5152 and df-mpo 7249), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 28675). Note that df-ov 7247 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6775 and fvprc 6737). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6834, dffv3 6741, fv2 6740, and fv3 6763 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6826 and funfv2 6827. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6796. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6742. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6407 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1542 . . . 4 class 𝑥
61, 5, 2wbr 5069 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6363 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1543 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6734  fveu  6735  fv2  6740  dffv3  6741  fveq1  6744  fveq2  6745  nffv  6755  fvex  6758  fvres  6764  tz6.12-1  6767  csbfv12  6788  fvopab5  6878  ovtpos  8017  rlimdm  15155  zsum  15325  isumclim3  15366  isumshft  15446  zprod  15542  iprodclim3  15605  avril1  28695  uncov  35655  fvsb  41924  dfafv2  44476  rlimdmafv  44521  dfafv22  44603
  Copyright terms: Public domain W3C validator