MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fv Structured version   Visualization version   GIF version

Definition df-fv 6519
Description: Define the value of a function, (𝐹𝐴), also known as function application. For example, (cos‘0) = 1 (we prove this in cos0 16118 after we define cosine in df-cos 16036). Typically, function 𝐹 is defined using maps-to notation (see df-mpt 5189 and df-mpo 7392), but this is not required. For example, 𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9 (ex-fv 30372). Note that df-ov 7390 will define two-argument functions using ordered pairs as (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩). This particular definition is quite convenient: it can be applied to any class and evaluates to the empty set when it is not meaningful (as shown by ndmfv 6893 and fvprc 6850). The left apostrophe notation originated with Peano and was adopted in Definition *30.01 of [WhiteheadRussell] p. 235, Definition 10.11 of [Quine] p. 68, and Definition 6.11 of [TakeutiZaring] p. 26. It means the same thing as the more familiar 𝐹(𝐴) notation for a function's value at 𝐴, i.e., "𝐹 of 𝐴", but without context-dependent notational ambiguity. Alternate definitions are dffv2 6956, dffv3 6854, fv2 6853, and fv3 6876 (the latter two previously required 𝐴 to be a set.) Restricted equivalents that require 𝐹 to be a function are shown in funfv 6948 and funfv2 6949. For the familiar definition of function value in terms of ordered pair membership, see funopfvb 6915. (Contributed by NM, 1-Aug-1994.) Revised to use . Original version is now Theorem dffv4 6855. (Revised by Scott Fenton, 6-Oct-2017.)
Assertion
Ref Expression
df-fv (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Detailed syntax breakdown of Definition df-fv
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cF . . 3 class 𝐹
31, 2cfv 6511 . 2 class (𝐹𝐴)
4 vx . . . . 5 setvar 𝑥
54cv 1539 . . . 4 class 𝑥
61, 5, 2wbr 5107 . . 3 wff 𝐴𝐹𝑥
76, 4cio 6462 . 2 class (℩𝑥𝐴𝐹𝑥)
83, 7wceq 1540 1 wff (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
Colors of variables: wff setvar class
This definition is referenced by:  tz6.12-2  6846  fveu  6847  fv2  6853  dffv3  6854  fveq1  6857  fveq2  6858  nffv  6868  fvex  6871  fvres  6877  tz6.12c  6880  tz6.12-1OLD  6882  csbfv12  6906  fvopab5  7001  ovtpos  8220  rlimdm  15517  zsum  15684  isumclim3  15725  isumshft  15805  zprod  15903  iprodclim3  15966  avril1  30392  uncov  37595  sn-tz6.12-2  42668  fvsb  44441  dfafv2  47130  rlimdmafv  47175  dfafv22  47257
  Copyright terms: Public domain W3C validator