Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . 5
⊢ ((𝑁 ∈ ω ∧ ∅ =
(rec((𝑛 ∈ ω,
𝑥 ∈ V ↦
if((𝑛 = 1o ∧
𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁)) → 𝑁 ∈ ω) |
2 | 1 | con3i 154 |
. . . 4
⊢ (¬
𝑁 ∈ ω →
¬ (𝑁 ∈ ω
∧ ∅ = (rec((𝑛
∈ ω, 𝑥 ∈ V
↦ if((𝑛 =
1o ∧ 𝑥
∈ 𝑈), ∅,
if(𝑥 ∈ (V ×
𝑈), 〈∪ 𝑛,
(1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))) |
3 | | abid 2719 |
. . . 4
⊢ (𝑦 ∈ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))} ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))) |
4 | 2, 3 | sylnibr 329 |
. . 3
⊢ (¬
𝑁 ∈ ω →
¬ 𝑦 ∈ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))}) |
5 | | df-finxp 35555 |
. . . 4
⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))} |
6 | 5 | eleq2i 2830 |
. . 3
⊢ (𝑦 ∈ (𝑈↑↑𝑁) ↔ 𝑦 ∈ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))}) |
7 | 4, 6 | sylnibr 329 |
. 2
⊢ (¬
𝑁 ∈ ω →
¬ 𝑦 ∈ (𝑈↑↑𝑁)) |
8 | 7 | eq0rdv 4338 |
1
⊢ (¬
𝑁 ∈ ω →
(𝑈↑↑𝑁) = ∅) |