Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpnom Structured version   Visualization version   GIF version

Theorem finxpnom 35099
Description: Cartesian exponentiation when the exponent is not a natural number defaults to the empty set. (Contributed by ML, 24-Oct-2020.)
Assertion
Ref Expression
finxpnom 𝑁 ∈ ω → (𝑈↑↑𝑁) = ∅)

Proof of Theorem finxpnom
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 487 . . . . 5 ((𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) → 𝑁 ∈ ω)
21con3i 157 . . . 4 𝑁 ∈ ω → ¬ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
3 abid 2740 . . . 4 (𝑦 ∈ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
42, 3sylnibr 333 . . 3 𝑁 ∈ ω → ¬ 𝑦 ∈ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))})
5 df-finxp 35082 . . . 4 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
65eleq2i 2844 . . 3 (𝑦 ∈ (𝑈↑↑𝑁) ↔ 𝑦 ∈ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))})
74, 6sylnibr 333 . 2 𝑁 ∈ ω → ¬ 𝑦 ∈ (𝑈↑↑𝑁))
87eq0rdv 4301 1 𝑁 ∈ ω → (𝑈↑↑𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  {cab 2736  Vcvv 3410  c0 4226  ifcif 4421  cop 4529   cuni 4799   × cxp 5523  cfv 6336  cmpo 7153  ωcom 7580  1st c1st 7692  reccrdg 8056  1oc1o 8106  ↑↑cfinxp 35081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-12 2176  ax-ext 2730
This theorem depends on definitions:  df-bi 210  df-an 401  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-dif 3862  df-nul 4227  df-finxp 35082
This theorem is referenced by:  finxp00  35100
  Copyright terms: Public domain W3C validator