![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffinxpf | Structured version Visualization version GIF version |
Description: This theorem is the same as Definition df-finxp 36721, except that the large function is replaced by a class variable for brevity. (Contributed by ML, 24-Oct-2020.) |
Ref | Expression |
---|---|
dffinxpf.1 | ⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) |
Ref | Expression |
---|---|
dffinxpf | ⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-finxp 36721 | . 2 ⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} | |
2 | dffinxpf.1 | . . . . . . 7 ⊢ 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) | |
3 | rdgeq1 8406 | . . . . . . 7 ⊢ (𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) → rec(𝐹, ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ rec(𝐹, ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) |
5 | 4 | fveq1i 6882 | . . . . 5 ⊢ (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) |
6 | 5 | eqeq2i 2737 | . . . 4 ⊢ (∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) |
7 | 6 | anbi2i 622 | . . 3 ⊢ ((𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))) |
8 | 7 | abbii 2794 | . 2 ⊢ {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} |
9 | 1, 8 | eqtr4i 2755 | 1 ⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 Vcvv 3466 ∅c0 4314 ifcif 4520 ⟨cop 4626 ∪ cuni 4899 × cxp 5664 ‘cfv 6533 ∈ cmpo 7403 ωcom 7848 1st c1st 7966 reccrdg 8404 1oc1o 8454 ↑↑cfinxp 36720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-xp 5672 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-iota 6485 df-fv 6541 df-ov 7404 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-finxp 36721 |
This theorem is referenced by: finxpreclem6 36733 finxpsuclem 36734 |
Copyright terms: Public domain | W3C validator |