Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpeq1 Structured version   Visualization version   GIF version

Theorem finxpeq1 37387
Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
finxpeq1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))

Proof of Theorem finxpeq1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2830 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥𝑈𝑥𝑉))
21anbi2d 630 . . . . . . . . 9 (𝑈 = 𝑉 → ((𝑛 = 1o𝑥𝑈) ↔ (𝑛 = 1o𝑥𝑉)))
3 xpeq2 5706 . . . . . . . . . . 11 (𝑈 = 𝑉 → (V × 𝑈) = (V × 𝑉))
43eleq2d 2827 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥 ∈ (V × 𝑈) ↔ 𝑥 ∈ (V × 𝑉)))
54ifbid 4549 . . . . . . . . 9 (𝑈 = 𝑉 → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
62, 5ifbieq2d 4552 . . . . . . . 8 (𝑈 = 𝑉 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
76mpoeq3dv 7512 . . . . . . 7 (𝑈 = 𝑉 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
8 rdgeq1 8451 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
97, 8syl 17 . . . . . 6 (𝑈 = 𝑉 → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
109fveq1d 6908 . . . . 5 (𝑈 = 𝑉 → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))
1110eqeq2d 2748 . . . 4 (𝑈 = 𝑉 → (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
1211anbi2d 630 . . 3 (𝑈 = 𝑉 → ((𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))))
1312abbidv 2808 . 2 (𝑈 = 𝑉 → {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))})
14 df-finxp 37385 . 2 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
15 df-finxp 37385 . 2 (𝑉↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
1613, 14, 153eqtr4g 2802 1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2714  Vcvv 3480  c0 4333  ifcif 4525  cop 4632   cuni 4907   × cxp 5683  cfv 6561  cmpo 7433  ωcom 7887  1st c1st 8012  reccrdg 8449  1oc1o 8499  ↑↑cfinxp 37384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-xp 5691  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-iota 6514  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-finxp 37385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator