Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpeq1 Structured version   Visualization version   GIF version

Theorem finxpeq1 34670
Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
finxpeq1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))

Proof of Theorem finxpeq1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2901 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥𝑈𝑥𝑉))
21anbi2d 630 . . . . . . . . 9 (𝑈 = 𝑉 → ((𝑛 = 1o𝑥𝑈) ↔ (𝑛 = 1o𝑥𝑉)))
3 xpeq2 5576 . . . . . . . . . . 11 (𝑈 = 𝑉 → (V × 𝑈) = (V × 𝑉))
43eleq2d 2898 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥 ∈ (V × 𝑈) ↔ 𝑥 ∈ (V × 𝑉)))
54ifbid 4489 . . . . . . . . 9 (𝑈 = 𝑉 → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
62, 5ifbieq2d 4492 . . . . . . . 8 (𝑈 = 𝑉 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
76mpoeq3dv 7233 . . . . . . 7 (𝑈 = 𝑉 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
8 rdgeq1 8047 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
97, 8syl 17 . . . . . 6 (𝑈 = 𝑉 → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
109fveq1d 6672 . . . . 5 (𝑈 = 𝑉 → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))
1110eqeq2d 2832 . . . 4 (𝑈 = 𝑉 → (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
1211anbi2d 630 . . 3 (𝑈 = 𝑉 → ((𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))))
1312abbidv 2885 . 2 (𝑈 = 𝑉 → {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))})
14 df-finxp 34668 . 2 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
15 df-finxp 34668 . 2 (𝑉↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
1613, 14, 153eqtr4g 2881 1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2799  Vcvv 3494  c0 4291  ifcif 4467  cop 4573   cuni 4838   × cxp 5553  cfv 6355  cmpo 7158  ωcom 7580  1st c1st 7687  reccrdg 8045  1oc1o 8095  ↑↑cfinxp 34667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-xp 5561  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fv 6363  df-oprab 7160  df-mpo 7161  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-finxp 34668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator