Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpeq1 Structured version   Visualization version   GIF version

Theorem finxpeq1 37347
Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
finxpeq1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))

Proof of Theorem finxpeq1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2817 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥𝑈𝑥𝑉))
21anbi2d 630 . . . . . . . . 9 (𝑈 = 𝑉 → ((𝑛 = 1o𝑥𝑈) ↔ (𝑛 = 1o𝑥𝑉)))
3 xpeq2 5652 . . . . . . . . . . 11 (𝑈 = 𝑉 → (V × 𝑈) = (V × 𝑉))
43eleq2d 2814 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥 ∈ (V × 𝑈) ↔ 𝑥 ∈ (V × 𝑉)))
54ifbid 4508 . . . . . . . . 9 (𝑈 = 𝑉 → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
62, 5ifbieq2d 4511 . . . . . . . 8 (𝑈 = 𝑉 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
76mpoeq3dv 7448 . . . . . . 7 (𝑈 = 𝑉 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
8 rdgeq1 8356 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
97, 8syl 17 . . . . . 6 (𝑈 = 𝑉 → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
109fveq1d 6842 . . . . 5 (𝑈 = 𝑉 → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))
1110eqeq2d 2740 . . . 4 (𝑈 = 𝑉 → (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
1211anbi2d 630 . . 3 (𝑈 = 𝑉 → ((𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))))
1312abbidv 2795 . 2 (𝑈 = 𝑉 → {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))})
14 df-finxp 37345 . 2 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
15 df-finxp 37345 . 2 (𝑉↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
1613, 14, 153eqtr4g 2789 1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3444  c0 4292  ifcif 4484  cop 4591   cuni 4867   × cxp 5629  cfv 6499  cmpo 7371  ωcom 7822  1st c1st 7945  reccrdg 8354  1oc1o 8404  ↑↑cfinxp 37344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-xp 5637  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-finxp 37345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator