Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpeq1 Structured version   Visualization version   GIF version

Theorem finxpeq1 35083
Description: Equality theorem for Cartesian exponentiation. (Contributed by ML, 19-Oct-2020.)
Assertion
Ref Expression
finxpeq1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))

Proof of Theorem finxpeq1
Dummy variables 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2840 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥𝑈𝑥𝑉))
21anbi2d 631 . . . . . . . . 9 (𝑈 = 𝑉 → ((𝑛 = 1o𝑥𝑈) ↔ (𝑛 = 1o𝑥𝑉)))
3 xpeq2 5545 . . . . . . . . . . 11 (𝑈 = 𝑉 → (V × 𝑈) = (V × 𝑉))
43eleq2d 2837 . . . . . . . . . 10 (𝑈 = 𝑉 → (𝑥 ∈ (V × 𝑈) ↔ 𝑥 ∈ (V × 𝑉)))
54ifbid 4443 . . . . . . . . 9 (𝑈 = 𝑉 → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
62, 5ifbieq2d 4446 . . . . . . . 8 (𝑈 = 𝑉 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
76mpoeq3dv 7227 . . . . . . 7 (𝑈 = 𝑉 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
8 rdgeq1 8057 . . . . . . 7 ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
97, 8syl 17 . . . . . 6 (𝑈 = 𝑉 → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩))
109fveq1d 6660 . . . . 5 (𝑈 = 𝑉 → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))
1110eqeq2d 2769 . . . 4 (𝑈 = 𝑉 → (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))
1211anbi2d 631 . . 3 (𝑈 = 𝑉 → ((𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))))
1312abbidv 2822 . 2 (𝑈 = 𝑉 → {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))})
14 df-finxp 35081 . 2 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
15 df-finxp 35081 . 2 (𝑉↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
1613, 14, 153eqtr4g 2818 1 (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2735  Vcvv 3409  c0 4225  ifcif 4420  cop 4528   cuni 4798   × cxp 5522  cfv 6335  cmpo 7152  ωcom 7579  1st c1st 7691  reccrdg 8055  1oc1o 8105  ↑↑cfinxp 35080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rab 3079  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-iota 6294  df-fv 6343  df-oprab 7154  df-mpo 7155  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-finxp 35081
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator