Step | Hyp | Ref
| Expression |
1 | | eleq2 2822 |
. . . . . . . . . 10
⊢ (𝑈 = 𝑉 → (𝑥 ∈ 𝑈 ↔ 𝑥 ∈ 𝑉)) |
2 | 1 | anbi2d 629 |
. . . . . . . . 9
⊢ (𝑈 = 𝑉 → ((𝑛 = 1o ∧ 𝑥 ∈ 𝑈) ↔ (𝑛 = 1o ∧ 𝑥 ∈ 𝑉))) |
3 | | xpeq2 5696 |
. . . . . . . . . . 11
⊢ (𝑈 = 𝑉 → (V × 𝑈) = (V × 𝑉)) |
4 | 3 | eleq2d 2819 |
. . . . . . . . . 10
⊢ (𝑈 = 𝑉 → (𝑥 ∈ (V × 𝑈) ↔ 𝑥 ∈ (V × 𝑉))) |
5 | 4 | ifbid 4550 |
. . . . . . . . 9
⊢ (𝑈 = 𝑉 → if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩) = if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩)) |
6 | 2, 5 | ifbieq2d 4553 |
. . . . . . . 8
⊢ (𝑈 = 𝑉 → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) |
7 | 6 | mpoeq3dv 7484 |
. . . . . . 7
⊢ (𝑈 = 𝑉 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩)))) |
8 | | rdgeq1 8407 |
. . . . . . 7
⊢ ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))) → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝑈 = 𝑉 → rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩) = rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)) |
10 | 9 | fveq1d 6890 |
. . . . 5
⊢ (𝑈 = 𝑉 → (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) |
11 | 10 | eqeq2d 2743 |
. . . 4
⊢ (𝑈 = 𝑉 → (∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁) ↔ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))) |
12 | 11 | anbi2d 629 |
. . 3
⊢ (𝑈 = 𝑉 → ((𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁)))) |
13 | 12 | abbidv 2801 |
. 2
⊢ (𝑈 = 𝑉 → {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}) |
14 | | df-finxp 36253 |
. 2
⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} |
15 | | df-finxp 36253 |
. 2
⊢ (𝑉↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑉), ∅, if(𝑥 ∈ (V × 𝑉), ⟨∪ 𝑛, (1st ‘𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))} |
16 | 13, 14, 15 | 3eqtr4g 2797 |
1
⊢ (𝑈 = 𝑉 → (𝑈↑↑𝑁) = (𝑉↑↑𝑁)) |