MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-inl Structured version   Visualization version   GIF version

Definition df-inl 9518
Description: Left injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
Assertion
Ref Expression
df-inl inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)

Detailed syntax breakdown of Definition df-inl
StepHypRef Expression
1 cinl 9515 . 2 class inl
2 vx . . 3 setvar 𝑥
3 cvv 3408 . . 3 class V
4 c0 4237 . . . 4 class
52cv 1542 . . . 4 class 𝑥
64, 5cop 4547 . . 3 class ⟨∅, 𝑥
72, 3, 6cmpt 5135 . 2 class (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
81, 7wceq 1543 1 wff inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
Colors of variables: wff setvar class
This definition is referenced by:  djulcl  9526  djulf1o  9528  inlresf  9530  djur  9535  djuss  9536  djuun  9542  1stinl  9543  2ndinl  9544
  Copyright terms: Public domain W3C validator