MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inlresf Structured version   Visualization version   GIF version

Theorem inlresf 9775
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inlresf (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)

Proof of Theorem inlresf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulf1o 9773 . . 3 inl:V–1-1-onto→({∅} × V)
2 f1ofun 6773 . . 3 (inl:V–1-1-onto→({∅} × V) → Fun inl)
3 ffvresb 7058 . . 3 (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵))))
41, 2, 3mp2b 10 . 2 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
5 elex 3460 . . . 4 (𝑥𝐴𝑥 ∈ V)
6 opex 5413 . . . . 5 ⟨∅, 𝑥⟩ ∈ V
7 df-inl 9763 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7dmmpti 6632 . . . 4 dom inl = V
95, 8eleqtrrdi 2849 . . 3 (𝑥𝐴𝑥 ∈ dom inl)
10 djulcl 9771 . . 3 (𝑥𝐴 → (inl‘𝑥) ∈ (𝐴𝐵))
119, 10jca 513 . 2 (𝑥𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
124, 11mprgbir 3069 1 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2106  wral 3062  Vcvv 3442  c0 4273  {csn 4577  cop 4583   × cxp 5622  dom cdm 5624  cres 5626  Fun wfun 6477  wf 6479  1-1-ontowf1o 6482  cfv 6483  cdju 9759  inlcinl 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-1st 7903  df-2nd 7904  df-dju 9762  df-inl 9763
This theorem is referenced by:  inlresf1  9776  updjudhcoinlf  9793  updjud  9795
  Copyright terms: Public domain W3C validator