| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inlresf | Structured version Visualization version GIF version | ||
| Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| inlresf | ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1o 9841 | . . 3 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 2 | f1ofun 6784 | . . 3 ⊢ (inl:V–1-1-onto→({∅} × V) → Fun inl) | |
| 3 | ffvresb 7079 | . . 3 ⊢ (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 5 | elex 3465 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 6 | opex 5419 | . . . . 5 ⊢ 〈∅, 𝑥〉 ∈ V | |
| 7 | df-inl 9831 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | dmmpti 6644 | . . . 4 ⊢ dom inl = V |
| 9 | 5, 8 | eleqtrrdi 2839 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl) |
| 10 | djulcl 9839 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
| 11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 12 | 4, 11 | mprgbir 3051 | 1 ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∅c0 4292 {csn 4585 〈cop 4591 × cxp 5629 dom cdm 5631 ↾ cres 5633 Fun wfun 6493 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 ⊔ cdju 9827 inlcinl 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-1st 7947 df-2nd 7948 df-dju 9830 df-inl 9831 |
| This theorem is referenced by: inlresf1 9844 updjudhcoinlf 9861 updjud 9863 |
| Copyright terms: Public domain | W3C validator |