Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inlresf | Structured version Visualization version GIF version |
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
inlresf | ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1o 9773 | . . 3 ⊢ inl:V–1-1-onto→({∅} × V) | |
2 | f1ofun 6773 | . . 3 ⊢ (inl:V–1-1-onto→({∅} × V) → Fun inl) | |
3 | ffvresb 7058 | . . 3 ⊢ (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
5 | elex 3460 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
6 | opex 5413 | . . . . 5 ⊢ 〈∅, 𝑥〉 ∈ V | |
7 | df-inl 9763 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
8 | 6, 7 | dmmpti 6632 | . . . 4 ⊢ dom inl = V |
9 | 5, 8 | eleqtrrdi 2849 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl) |
10 | djulcl 9771 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
11 | 9, 10 | jca 513 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
12 | 4, 11 | mprgbir 3069 | 1 ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2106 ∀wral 3062 Vcvv 3442 ∅c0 4273 {csn 4577 〈cop 4583 × cxp 5622 dom cdm 5624 ↾ cres 5626 Fun wfun 6477 ⟶wf 6479 –1-1-onto→wf1o 6482 ‘cfv 6483 ⊔ cdju 9759 inlcinl 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-1st 7903 df-2nd 7904 df-dju 9762 df-inl 9763 |
This theorem is referenced by: inlresf1 9776 updjudhcoinlf 9793 updjud 9795 |
Copyright terms: Public domain | W3C validator |