MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inlresf Structured version   Visualization version   GIF version

Theorem inlresf 9672
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inlresf (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)

Proof of Theorem inlresf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulf1o 9670 . . 3 inl:V–1-1-onto→({∅} × V)
2 f1ofun 6718 . . 3 (inl:V–1-1-onto→({∅} × V) → Fun inl)
3 ffvresb 6998 . . 3 (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵))))
41, 2, 3mp2b 10 . 2 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
5 elex 3450 . . . 4 (𝑥𝐴𝑥 ∈ V)
6 opex 5379 . . . . 5 ⟨∅, 𝑥⟩ ∈ V
7 df-inl 9660 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7dmmpti 6577 . . . 4 dom inl = V
95, 8eleqtrrdi 2850 . . 3 (𝑥𝐴𝑥 ∈ dom inl)
10 djulcl 9668 . . 3 (𝑥𝐴 → (inl‘𝑥) ∈ (𝐴𝐵))
119, 10jca 512 . 2 (𝑥𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
124, 11mprgbir 3079 1 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  wral 3064  Vcvv 3432  c0 4256  {csn 4561  cop 4567   × cxp 5587  dom cdm 5589  cres 5591  Fun wfun 6427  wf 6429  1-1-ontowf1o 6432  cfv 6433  cdju 9656  inlcinl 9657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1st 7831  df-2nd 7832  df-dju 9659  df-inl 9660
This theorem is referenced by:  inlresf1  9673  updjudhcoinlf  9690  updjud  9692
  Copyright terms: Public domain W3C validator