MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inlresf Structured version   Visualization version   GIF version

Theorem inlresf 9874
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inlresf (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)

Proof of Theorem inlresf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulf1o 9872 . . 3 inl:V–1-1-onto→({∅} × V)
2 f1ofun 6805 . . 3 (inl:V–1-1-onto→({∅} × V) → Fun inl)
3 ffvresb 7100 . . 3 (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵))))
41, 2, 3mp2b 10 . 2 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
5 elex 3471 . . . 4 (𝑥𝐴𝑥 ∈ V)
6 opex 5427 . . . . 5 ⟨∅, 𝑥⟩ ∈ V
7 df-inl 9862 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7dmmpti 6665 . . . 4 dom inl = V
95, 8eleqtrrdi 2840 . . 3 (𝑥𝐴𝑥 ∈ dom inl)
10 djulcl 9870 . . 3 (𝑥𝐴 → (inl‘𝑥) ∈ (𝐴𝐵))
119, 10jca 511 . 2 (𝑥𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
124, 11mprgbir 3052 1 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wral 3045  Vcvv 3450  c0 4299  {csn 4592  cop 4598   × cxp 5639  dom cdm 5641  cres 5643  Fun wfun 6508  wf 6510  1-1-ontowf1o 6513  cfv 6514  cdju 9858  inlcinl 9859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-dju 9861  df-inl 9862
This theorem is referenced by:  inlresf1  9875  updjudhcoinlf  9892  updjud  9894
  Copyright terms: Public domain W3C validator