|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > inlresf | Structured version Visualization version GIF version | ||
| Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| inlresf | ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | djulf1o 9953 | . . 3 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 2 | f1ofun 6849 | . . 3 ⊢ (inl:V–1-1-onto→({∅} × V) → Fun inl) | |
| 3 | ffvresb 7144 | . . 3 ⊢ (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) | 
| 5 | elex 3500 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 6 | opex 5468 | . . . . 5 ⊢ 〈∅, 𝑥〉 ∈ V | |
| 7 | df-inl 9943 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | dmmpti 6711 | . . . 4 ⊢ dom inl = V | 
| 9 | 5, 8 | eleqtrrdi 2851 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl) | 
| 10 | djulcl 9951 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
| 11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) | 
| 12 | 4, 11 | mprgbir 3067 | 1 ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ∅c0 4332 {csn 4625 〈cop 4631 × cxp 5682 dom cdm 5684 ↾ cres 5686 Fun wfun 6554 ⟶wf 6556 –1-1-onto→wf1o 6559 ‘cfv 6560 ⊔ cdju 9939 inlcinl 9940 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-1st 8015 df-2nd 8016 df-dju 9942 df-inl 9943 | 
| This theorem is referenced by: inlresf1 9956 updjudhcoinlf 9973 updjud 9975 | 
| Copyright terms: Public domain | W3C validator |