| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inlresf | Structured version Visualization version GIF version | ||
| Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| inlresf | ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1o 9872 | . . 3 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 2 | f1ofun 6805 | . . 3 ⊢ (inl:V–1-1-onto→({∅} × V) → Fun inl) | |
| 3 | ffvresb 7100 | . . 3 ⊢ (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 5 | elex 3471 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 6 | opex 5427 | . . . . 5 ⊢ 〈∅, 𝑥〉 ∈ V | |
| 7 | df-inl 9862 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | dmmpti 6665 | . . . 4 ⊢ dom inl = V |
| 9 | 5, 8 | eleqtrrdi 2840 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl) |
| 10 | djulcl 9870 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
| 11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 12 | 4, 11 | mprgbir 3052 | 1 ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∅c0 4299 {csn 4592 〈cop 4598 × cxp 5639 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 ⟶wf 6510 –1-1-onto→wf1o 6513 ‘cfv 6514 ⊔ cdju 9858 inlcinl 9859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-dju 9861 df-inl 9862 |
| This theorem is referenced by: inlresf1 9875 updjudhcoinlf 9892 updjud 9894 |
| Copyright terms: Public domain | W3C validator |