![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inlresf | Structured version Visualization version GIF version |
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
inlresf | β’ (inl βΎ π΄):π΄βΆ(π΄ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1o 9906 | . . 3 β’ inl:Vβ1-1-ontoβ({β } Γ V) | |
2 | f1ofun 6835 | . . 3 β’ (inl:Vβ1-1-ontoβ({β } Γ V) β Fun inl) | |
3 | ffvresb 7123 | . . 3 β’ (Fun inl β ((inl βΎ π΄):π΄βΆ(π΄ β π΅) β βπ₯ β π΄ (π₯ β dom inl β§ (inlβπ₯) β (π΄ β π΅)))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 β’ ((inl βΎ π΄):π΄βΆ(π΄ β π΅) β βπ₯ β π΄ (π₯ β dom inl β§ (inlβπ₯) β (π΄ β π΅))) |
5 | elex 3492 | . . . 4 β’ (π₯ β π΄ β π₯ β V) | |
6 | opex 5464 | . . . . 5 β’ β¨β , π₯β© β V | |
7 | df-inl 9896 | . . . . 5 β’ inl = (π₯ β V β¦ β¨β , π₯β©) | |
8 | 6, 7 | dmmpti 6694 | . . . 4 β’ dom inl = V |
9 | 5, 8 | eleqtrrdi 2844 | . . 3 β’ (π₯ β π΄ β π₯ β dom inl) |
10 | djulcl 9904 | . . 3 β’ (π₯ β π΄ β (inlβπ₯) β (π΄ β π΅)) | |
11 | 9, 10 | jca 512 | . 2 β’ (π₯ β π΄ β (π₯ β dom inl β§ (inlβπ₯) β (π΄ β π΅))) |
12 | 4, 11 | mprgbir 3068 | 1 β’ (inl βΎ π΄):π΄βΆ(π΄ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 β wcel 2106 βwral 3061 Vcvv 3474 β c0 4322 {csn 4628 β¨cop 4634 Γ cxp 5674 dom cdm 5676 βΎ cres 5678 Fun wfun 6537 βΆwf 6539 β1-1-ontoβwf1o 6542 βcfv 6543 β cdju 9892 inlcinl 9893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-1st 7974 df-2nd 7975 df-dju 9895 df-inl 9896 |
This theorem is referenced by: inlresf1 9909 updjudhcoinlf 9926 updjud 9928 |
Copyright terms: Public domain | W3C validator |