| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inlresf | Structured version Visualization version GIF version | ||
| Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| inlresf | ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1o 9808 | . . 3 ⊢ inl:V–1-1-onto→({∅} × V) | |
| 2 | f1ofun 6766 | . . 3 ⊢ (inl:V–1-1-onto→({∅} × V) → Fun inl) | |
| 3 | ffvresb 7059 | . . 3 ⊢ (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ((inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 5 | elex 3457 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 6 | opex 5407 | . . . . 5 ⊢ 〈∅, 𝑥〉 ∈ V | |
| 7 | df-inl 9798 | . . . . 5 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 8 | 6, 7 | dmmpti 6626 | . . . 4 ⊢ dom inl = V |
| 9 | 5, 8 | eleqtrrdi 2839 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ dom inl) |
| 10 | djulcl 9806 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵)) | |
| 11 | 9, 10 | jca 511 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴 ⊔ 𝐵))) |
| 12 | 4, 11 | mprgbir 3051 | 1 ⊢ (inl ↾ 𝐴):𝐴⟶(𝐴 ⊔ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∅c0 4284 {csn 4577 〈cop 4583 × cxp 5617 dom cdm 5619 ↾ cres 5621 Fun wfun 6476 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 ⊔ cdju 9794 inlcinl 9795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-1st 7924 df-2nd 7925 df-dju 9797 df-inl 9798 |
| This theorem is referenced by: inlresf1 9811 updjudhcoinlf 9828 updjud 9830 |
| Copyright terms: Public domain | W3C validator |