MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inlresf Structured version   Visualization version   GIF version

Theorem inlresf 9810
Description: The left injection restricted to the left class of a disjoint union is a function from the left class into the disjoint union. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
inlresf (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)

Proof of Theorem inlresf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 djulf1o 9808 . . 3 inl:V–1-1-onto→({∅} × V)
2 f1ofun 6766 . . 3 (inl:V–1-1-onto→({∅} × V) → Fun inl)
3 ffvresb 7059 . . 3 (Fun inl → ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵))))
41, 2, 3mp2b 10 . 2 ((inl ↾ 𝐴):𝐴⟶(𝐴𝐵) ↔ ∀𝑥𝐴 (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
5 elex 3457 . . . 4 (𝑥𝐴𝑥 ∈ V)
6 opex 5407 . . . . 5 ⟨∅, 𝑥⟩ ∈ V
7 df-inl 9798 . . . . 5 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
86, 7dmmpti 6626 . . . 4 dom inl = V
95, 8eleqtrrdi 2839 . . 3 (𝑥𝐴𝑥 ∈ dom inl)
10 djulcl 9806 . . 3 (𝑥𝐴 → (inl‘𝑥) ∈ (𝐴𝐵))
119, 10jca 511 . 2 (𝑥𝐴 → (𝑥 ∈ dom inl ∧ (inl‘𝑥) ∈ (𝐴𝐵)))
124, 11mprgbir 3051 1 (inl ↾ 𝐴):𝐴⟶(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  wral 3044  Vcvv 3436  c0 4284  {csn 4577  cop 4583   × cxp 5617  dom cdm 5619  cres 5621  Fun wfun 6476  wf 6478  1-1-ontowf1o 6481  cfv 6482  cdju 9794  inlcinl 9795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925  df-dju 9797  df-inl 9798
This theorem is referenced by:  inlresf1  9811  updjudhcoinlf  9828  updjud  9830
  Copyright terms: Public domain W3C validator