| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stinl | Structured version Visualization version GIF version | ||
| Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 1stinl | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 9855 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | opeq2 4838 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
| 3 | elex 3468 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 4 | opex 5424 | . . . . 5 ⊢ 〈∅, 𝑋〉 ∈ V | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
| 6 | 1, 2, 3, 5 | fvmptd3 6991 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
| 7 | 6 | fveq2d 6862 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘〈∅, 𝑋〉)) |
| 8 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 9 | op1stg 7980 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (1st ‘〈∅, 𝑋〉) = ∅) | |
| 10 | 8, 9 | mpan 690 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈∅, 𝑋〉) = ∅) |
| 11 | 7, 10 | eqtrd 2764 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 ‘cfv 6511 1st c1st 7966 inlcinl 9852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-inl 9855 |
| This theorem is referenced by: updjudhcoinlf 9885 |
| Copyright terms: Public domain | W3C validator |