![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stinl | Structured version Visualization version GIF version |
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
1stinl | β’ (π β π β (1st β(inlβπ)) = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9903 | . . . 4 β’ inl = (π₯ β V β¦ β¨β , π₯β©) | |
2 | opeq2 4874 | . . . 4 β’ (π₯ = π β β¨β , π₯β© = β¨β , πβ©) | |
3 | elex 3492 | . . . 4 β’ (π β π β π β V) | |
4 | opex 5464 | . . . . 5 β’ β¨β , πβ© β V | |
5 | 4 | a1i 11 | . . . 4 β’ (π β π β β¨β , πβ© β V) |
6 | 1, 2, 3, 5 | fvmptd3 7021 | . . 3 β’ (π β π β (inlβπ) = β¨β , πβ©) |
7 | 6 | fveq2d 6895 | . 2 β’ (π β π β (1st β(inlβπ)) = (1st ββ¨β , πβ©)) |
8 | 0ex 5307 | . . 3 β’ β β V | |
9 | op1stg 7991 | . . 3 β’ ((β β V β§ π β π) β (1st ββ¨β , πβ©) = β ) | |
10 | 8, 9 | mpan 687 | . 2 β’ (π β π β (1st ββ¨β , πβ©) = β ) |
11 | 7, 10 | eqtrd 2771 | 1 β’ (π β π β (1st β(inlβπ)) = β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 Vcvv 3473 β c0 4322 β¨cop 4634 βcfv 6543 1st c1st 7977 inlcinl 9900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-1st 7979 df-inl 9903 |
This theorem is referenced by: updjudhcoinlf 9933 |
Copyright terms: Public domain | W3C validator |