![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1stinl | Structured version Visualization version GIF version |
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
Ref | Expression |
---|---|
1stinl | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9971 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | opeq2 4898 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
3 | elex 3509 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
4 | opex 5484 | . . . . 5 ⊢ 〈∅, 𝑋〉 ∈ V | |
5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
6 | 1, 2, 3, 5 | fvmptd3 7052 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
7 | 6 | fveq2d 6924 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘〈∅, 𝑋〉)) |
8 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
9 | op1stg 8042 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (1st ‘〈∅, 𝑋〉) = ∅) | |
10 | 8, 9 | mpan 689 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈∅, 𝑋〉) = ∅) |
11 | 7, 10 | eqtrd 2780 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6573 1st c1st 8028 inlcinl 9968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-inl 9971 |
This theorem is referenced by: updjudhcoinlf 10001 |
Copyright terms: Public domain | W3C validator |