| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stinl | Structured version Visualization version GIF version | ||
| Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.) |
| Ref | Expression |
|---|---|
| 1stinl | ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 9921 | . . . 4 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | opeq2 4855 | . . . 4 ⊢ (𝑥 = 𝑋 → 〈∅, 𝑥〉 = 〈∅, 𝑋〉) | |
| 3 | elex 3485 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) | |
| 4 | opex 5444 | . . . . 5 ⊢ 〈∅, 𝑋〉 ∈ V | |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → 〈∅, 𝑋〉 ∈ V) |
| 6 | 1, 2, 3, 5 | fvmptd3 7014 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (inl‘𝑋) = 〈∅, 𝑋〉) |
| 7 | 6 | fveq2d 6885 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘〈∅, 𝑋〉)) |
| 8 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 9 | op1stg 8005 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑋 ∈ 𝑉) → (1st ‘〈∅, 𝑋〉) = ∅) | |
| 10 | 8, 9 | mpan 690 | . 2 ⊢ (𝑋 ∈ 𝑉 → (1st ‘〈∅, 𝑋〉) = ∅) |
| 11 | 7, 10 | eqtrd 2771 | 1 ⊢ (𝑋 ∈ 𝑉 → (1st ‘(inl‘𝑋)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 〈cop 4612 ‘cfv 6536 1st c1st 7991 inlcinl 9918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-1st 7993 df-inl 9921 |
| This theorem is referenced by: updjudhcoinlf 9951 |
| Copyright terms: Public domain | W3C validator |