MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinl Structured version   Visualization version   GIF version

Theorem 1stinl 9685
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)

Proof of Theorem 1stinl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9660 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4805 . . . 4 (𝑥 = 𝑋 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
3 elex 3450 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5379 . . . . 5 ⟨∅, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨∅, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 6898 . . 3 (𝑋𝑉 → (inl‘𝑋) = ⟨∅, 𝑋⟩)
76fveq2d 6778 . 2 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘⟨∅, 𝑋⟩))
8 0ex 5231 . . 3 ∅ ∈ V
9 op1stg 7843 . . 3 ((∅ ∈ V ∧ 𝑋𝑉) → (1st ‘⟨∅, 𝑋⟩) = ∅)
108, 9mpan 687 . 2 (𝑋𝑉 → (1st ‘⟨∅, 𝑋⟩) = ∅)
117, 10eqtrd 2778 1 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cop 4567  cfv 6433  1st c1st 7829  inlcinl 9657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-inl 9660
This theorem is referenced by:  updjudhcoinlf  9690
  Copyright terms: Public domain W3C validator