MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinl Structured version   Visualization version   GIF version

Theorem 1stinl 9880
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)

Proof of Theorem 1stinl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9855 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4838 . . . 4 (𝑥 = 𝑋 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
3 elex 3468 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5424 . . . . 5 ⟨∅, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨∅, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 6991 . . 3 (𝑋𝑉 → (inl‘𝑋) = ⟨∅, 𝑋⟩)
76fveq2d 6862 . 2 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘⟨∅, 𝑋⟩))
8 0ex 5262 . . 3 ∅ ∈ V
9 op1stg 7980 . . 3 ((∅ ∈ V ∧ 𝑋𝑉) → (1st ‘⟨∅, 𝑋⟩) = ∅)
108, 9mpan 690 . 2 (𝑋𝑉 → (1st ‘⟨∅, 𝑋⟩) = ∅)
117, 10eqtrd 2764 1 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cop 4595  cfv 6511  1st c1st 7966  inlcinl 9852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-1st 7968  df-inl 9855
This theorem is referenced by:  updjudhcoinlf  9885
  Copyright terms: Public domain W3C validator