MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinl Structured version   Visualization version   GIF version

Theorem 1stinl 9967
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)

Proof of Theorem 1stinl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9942 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4874 . . . 4 (𝑥 = 𝑋 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
3 elex 3501 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5469 . . . . 5 ⟨∅, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨∅, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 7039 . . 3 (𝑋𝑉 → (inl‘𝑋) = ⟨∅, 𝑋⟩)
76fveq2d 6910 . 2 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘⟨∅, 𝑋⟩))
8 0ex 5307 . . 3 ∅ ∈ V
9 op1stg 8026 . . 3 ((∅ ∈ V ∧ 𝑋𝑉) → (1st ‘⟨∅, 𝑋⟩) = ∅)
108, 9mpan 690 . 2 (𝑋𝑉 → (1st ‘⟨∅, 𝑋⟩) = ∅)
117, 10eqtrd 2777 1 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  cop 4632  cfv 6561  1st c1st 8012  inlcinl 9939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fv 6569  df-1st 8014  df-inl 9942
This theorem is referenced by:  updjudhcoinlf  9972
  Copyright terms: Public domain W3C validator