MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinl Structured version   Visualization version   GIF version

Theorem 1stinl 9856
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)

Proof of Theorem 1stinl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9831 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4834 . . . 4 (𝑥 = 𝑋 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
3 elex 3465 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5419 . . . . 5 ⟨∅, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨∅, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 6973 . . 3 (𝑋𝑉 → (inl‘𝑋) = ⟨∅, 𝑋⟩)
76fveq2d 6844 . 2 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = (1st ‘⟨∅, 𝑋⟩))
8 0ex 5257 . . 3 ∅ ∈ V
9 op1stg 7959 . . 3 ((∅ ∈ V ∧ 𝑋𝑉) → (1st ‘⟨∅, 𝑋⟩) = ∅)
108, 9mpan 690 . 2 (𝑋𝑉 → (1st ‘⟨∅, 𝑋⟩) = ∅)
117, 10eqtrd 2764 1 (𝑋𝑉 → (1st ‘(inl‘𝑋)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  c0 4292  cop 4591  cfv 6499  1st c1st 7945  inlcinl 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-inl 9831
This theorem is referenced by:  updjudhcoinlf  9861
  Copyright terms: Public domain W3C validator