MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stinl Structured version   Visualization version   GIF version

Theorem 1stinl 9928
Description: The first component of the value of a left injection is the empty set. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
1stinl (𝑋 ∈ 𝑉 β†’ (1st β€˜(inlβ€˜π‘‹)) = βˆ…)

Proof of Theorem 1stinl
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-inl 9903 . . . 4 inl = (π‘₯ ∈ V ↦ βŸ¨βˆ…, π‘₯⟩)
2 opeq2 4874 . . . 4 (π‘₯ = 𝑋 β†’ βŸ¨βˆ…, π‘₯⟩ = βŸ¨βˆ…, π‘‹βŸ©)
3 elex 3492 . . . 4 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ V)
4 opex 5464 . . . . 5 βŸ¨βˆ…, π‘‹βŸ© ∈ V
54a1i 11 . . . 4 (𝑋 ∈ 𝑉 β†’ βŸ¨βˆ…, π‘‹βŸ© ∈ V)
61, 2, 3, 5fvmptd3 7021 . . 3 (𝑋 ∈ 𝑉 β†’ (inlβ€˜π‘‹) = βŸ¨βˆ…, π‘‹βŸ©)
76fveq2d 6895 . 2 (𝑋 ∈ 𝑉 β†’ (1st β€˜(inlβ€˜π‘‹)) = (1st β€˜βŸ¨βˆ…, π‘‹βŸ©))
8 0ex 5307 . . 3 βˆ… ∈ V
9 op1stg 7991 . . 3 ((βˆ… ∈ V ∧ 𝑋 ∈ 𝑉) β†’ (1st β€˜βŸ¨βˆ…, π‘‹βŸ©) = βˆ…)
108, 9mpan 687 . 2 (𝑋 ∈ 𝑉 β†’ (1st β€˜βŸ¨βˆ…, π‘‹βŸ©) = βˆ…)
117, 10eqtrd 2771 1 (𝑋 ∈ 𝑉 β†’ (1st β€˜(inlβ€˜π‘‹)) = βˆ…)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3473  βˆ…c0 4322  βŸ¨cop 4634  β€˜cfv 6543  1st c1st 7977  inlcinl 9900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7979  df-inl 9903
This theorem is referenced by:  updjudhcoinlf  9933
  Copyright terms: Public domain W3C validator