Step | Hyp | Ref
| Expression |
1 | | df-dju 9893 |
. . . 4
β’ (π΄ β π΅) = (({β
} Γ π΄) βͺ ({1o} Γ π΅)) |
2 | 1 | eleq2i 2826 |
. . 3
β’ (πΆ β (π΄ β π΅) β πΆ β (({β
} Γ π΄) βͺ ({1o} Γ
π΅))) |
3 | | elun 4148 |
. . 3
β’ (πΆ β (({β
} Γ
π΄) βͺ ({1o}
Γ π΅)) β (πΆ β ({β
} Γ π΄) β¨ πΆ β ({1o} Γ π΅))) |
4 | 2, 3 | sylbb 218 |
. 2
β’ (πΆ β (π΄ β π΅) β (πΆ β ({β
} Γ π΄) β¨ πΆ β ({1o} Γ π΅))) |
5 | | xp2nd 8005 |
. . . 4
β’ (πΆ β ({β
} Γ π΄) β (2nd
βπΆ) β π΄) |
6 | | 1st2nd2 8011 |
. . . . . 6
β’ (πΆ β ({β
} Γ π΄) β πΆ = β¨(1st βπΆ), (2nd βπΆ)β©) |
7 | | xp1st 8004 |
. . . . . . 7
β’ (πΆ β ({β
} Γ π΄) β (1st
βπΆ) β
{β
}) |
8 | | elsni 4645 |
. . . . . . 7
β’
((1st βπΆ) β {β
} β (1st
βπΆ) =
β
) |
9 | | opeq1 4873 |
. . . . . . . 8
β’
((1st βπΆ) = β
β β¨(1st
βπΆ), (2nd
βπΆ)β© =
β¨β
, (2nd βπΆ)β©) |
10 | 9 | eqeq2d 2744 |
. . . . . . 7
β’
((1st βπΆ) = β
β (πΆ = β¨(1st βπΆ), (2nd βπΆ)β© β πΆ = β¨β
, (2nd
βπΆ)β©)) |
11 | 7, 8, 10 | 3syl 18 |
. . . . . 6
β’ (πΆ β ({β
} Γ π΄) β (πΆ = β¨(1st βπΆ), (2nd βπΆ)β© β πΆ = β¨β
, (2nd
βπΆ)β©)) |
12 | 6, 11 | mpbid 231 |
. . . . 5
β’ (πΆ β ({β
} Γ π΄) β πΆ = β¨β
, (2nd
βπΆ)β©) |
13 | | fvexd 6904 |
. . . . . 6
β’ (πΆ β ({β
} Γ π΄) β (2nd
βπΆ) β
V) |
14 | | opex 5464 |
. . . . . 6
β’
β¨β
, (2nd βπΆ)β© β V |
15 | | opeq2 4874 |
. . . . . . 7
β’ (π¦ = (2nd βπΆ) β β¨β
, π¦β© = β¨β
,
(2nd βπΆ)β©) |
16 | | df-inl 9894 |
. . . . . . 7
β’ inl =
(π¦ β V β¦
β¨β
, π¦β©) |
17 | 15, 16 | fvmptg 6994 |
. . . . . 6
β’
(((2nd βπΆ) β V β§ β¨β
,
(2nd βπΆ)β© β V) β
(inlβ(2nd βπΆ)) = β¨β
, (2nd
βπΆ)β©) |
18 | 13, 14, 17 | sylancl 587 |
. . . . 5
β’ (πΆ β ({β
} Γ π΄) β
(inlβ(2nd βπΆ)) = β¨β
, (2nd
βπΆ)β©) |
19 | 12, 18 | eqtr4d 2776 |
. . . 4
β’ (πΆ β ({β
} Γ π΄) β πΆ = (inlβ(2nd βπΆ))) |
20 | | fveq2 6889 |
. . . . 5
β’ (π₯ = (2nd βπΆ) β (inlβπ₯) = (inlβ(2nd
βπΆ))) |
21 | 20 | rspceeqv 3633 |
. . . 4
β’
(((2nd βπΆ) β π΄ β§ πΆ = (inlβ(2nd βπΆ))) β βπ₯ β π΄ πΆ = (inlβπ₯)) |
22 | 5, 19, 21 | syl2anc 585 |
. . 3
β’ (πΆ β ({β
} Γ π΄) β βπ₯ β π΄ πΆ = (inlβπ₯)) |
23 | | xp2nd 8005 |
. . . 4
β’ (πΆ β ({1o} Γ
π΅) β (2nd
βπΆ) β π΅) |
24 | | 1st2nd2 8011 |
. . . . . 6
β’ (πΆ β ({1o} Γ
π΅) β πΆ = β¨(1st βπΆ), (2nd βπΆ)β©) |
25 | | xp1st 8004 |
. . . . . . 7
β’ (πΆ β ({1o} Γ
π΅) β (1st
βπΆ) β
{1o}) |
26 | | elsni 4645 |
. . . . . . 7
β’
((1st βπΆ) β {1o} β
(1st βπΆ) =
1o) |
27 | | opeq1 4873 |
. . . . . . . 8
β’
((1st βπΆ) = 1o β
β¨(1st βπΆ), (2nd βπΆ)β© = β¨1o,
(2nd βπΆ)β©) |
28 | 27 | eqeq2d 2744 |
. . . . . . 7
β’
((1st βπΆ) = 1o β (πΆ = β¨(1st βπΆ), (2nd βπΆ)β© β πΆ = β¨1o, (2nd
βπΆ)β©)) |
29 | 25, 26, 28 | 3syl 18 |
. . . . . 6
β’ (πΆ β ({1o} Γ
π΅) β (πΆ = β¨(1st
βπΆ), (2nd
βπΆ)β© β
πΆ = β¨1o,
(2nd βπΆ)β©)) |
30 | 24, 29 | mpbid 231 |
. . . . 5
β’ (πΆ β ({1o} Γ
π΅) β πΆ = β¨1o, (2nd
βπΆ)β©) |
31 | | fvexd 6904 |
. . . . . 6
β’ (πΆ β ({1o} Γ
π΅) β (2nd
βπΆ) β
V) |
32 | | opex 5464 |
. . . . . 6
β’
β¨1o, (2nd βπΆ)β© β V |
33 | | opeq2 4874 |
. . . . . . 7
β’ (π§ = (2nd βπΆ) β β¨1o,
π§β© =
β¨1o, (2nd βπΆ)β©) |
34 | | df-inr 9895 |
. . . . . . 7
β’ inr =
(π§ β V β¦
β¨1o, π§β©) |
35 | 33, 34 | fvmptg 6994 |
. . . . . 6
β’
(((2nd βπΆ) β V β§ β¨1o,
(2nd βπΆ)β© β V) β
(inrβ(2nd βπΆ)) = β¨1o, (2nd
βπΆ)β©) |
36 | 31, 32, 35 | sylancl 587 |
. . . . 5
β’ (πΆ β ({1o} Γ
π΅) β
(inrβ(2nd βπΆ)) = β¨1o, (2nd
βπΆ)β©) |
37 | 30, 36 | eqtr4d 2776 |
. . . 4
β’ (πΆ β ({1o} Γ
π΅) β πΆ = (inrβ(2nd βπΆ))) |
38 | | fveq2 6889 |
. . . . 5
β’ (π₯ = (2nd βπΆ) β (inrβπ₯) = (inrβ(2nd
βπΆ))) |
39 | 38 | rspceeqv 3633 |
. . . 4
β’
(((2nd βπΆ) β π΅ β§ πΆ = (inrβ(2nd βπΆ))) β βπ₯ β π΅ πΆ = (inrβπ₯)) |
40 | 23, 37, 39 | syl2anc 585 |
. . 3
β’ (πΆ β ({1o} Γ
π΅) β βπ₯ β π΅ πΆ = (inrβπ₯)) |
41 | 22, 40 | orim12i 908 |
. 2
β’ ((πΆ β ({β
} Γ π΄) β¨ πΆ β ({1o} Γ π΅)) β (βπ₯ β π΄ πΆ = (inlβπ₯) β¨ βπ₯ β π΅ πΆ = (inrβπ₯))) |
42 | 4, 41 | syl 17 |
1
β’ (πΆ β (π΄ β π΅) β (βπ₯ β π΄ πΆ = (inlβπ₯) β¨ βπ₯ β π΅ πΆ = (inrβπ₯))) |