MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djur Structured version   Visualization version   GIF version

Theorem djur 9608
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djur (𝐶 ∈ (𝐴𝐵) → (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem djur
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dju 9590 . . . 4 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
21eleq2i 2830 . . 3 (𝐶 ∈ (𝐴𝐵) ↔ 𝐶 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
3 elun 4079 . . 3 (𝐶 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)) ↔ (𝐶 ∈ ({∅} × 𝐴) ∨ 𝐶 ∈ ({1o} × 𝐵)))
42, 3sylbb 218 . 2 (𝐶 ∈ (𝐴𝐵) → (𝐶 ∈ ({∅} × 𝐴) ∨ 𝐶 ∈ ({1o} × 𝐵)))
5 xp2nd 7837 . . . 4 (𝐶 ∈ ({∅} × 𝐴) → (2nd𝐶) ∈ 𝐴)
6 1st2nd2 7843 . . . . . 6 (𝐶 ∈ ({∅} × 𝐴) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
7 xp1st 7836 . . . . . . 7 (𝐶 ∈ ({∅} × 𝐴) → (1st𝐶) ∈ {∅})
8 elsni 4575 . . . . . . 7 ((1st𝐶) ∈ {∅} → (1st𝐶) = ∅)
9 opeq1 4801 . . . . . . . 8 ((1st𝐶) = ∅ → ⟨(1st𝐶), (2nd𝐶)⟩ = ⟨∅, (2nd𝐶)⟩)
109eqeq2d 2749 . . . . . . 7 ((1st𝐶) = ∅ → (𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩ ↔ 𝐶 = ⟨∅, (2nd𝐶)⟩))
117, 8, 103syl 18 . . . . . 6 (𝐶 ∈ ({∅} × 𝐴) → (𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩ ↔ 𝐶 = ⟨∅, (2nd𝐶)⟩))
126, 11mpbid 231 . . . . 5 (𝐶 ∈ ({∅} × 𝐴) → 𝐶 = ⟨∅, (2nd𝐶)⟩)
13 fvexd 6771 . . . . . 6 (𝐶 ∈ ({∅} × 𝐴) → (2nd𝐶) ∈ V)
14 opex 5373 . . . . . 6 ⟨∅, (2nd𝐶)⟩ ∈ V
15 opeq2 4802 . . . . . . 7 (𝑦 = (2nd𝐶) → ⟨∅, 𝑦⟩ = ⟨∅, (2nd𝐶)⟩)
16 df-inl 9591 . . . . . . 7 inl = (𝑦 ∈ V ↦ ⟨∅, 𝑦⟩)
1715, 16fvmptg 6855 . . . . . 6 (((2nd𝐶) ∈ V ∧ ⟨∅, (2nd𝐶)⟩ ∈ V) → (inl‘(2nd𝐶)) = ⟨∅, (2nd𝐶)⟩)
1813, 14, 17sylancl 585 . . . . 5 (𝐶 ∈ ({∅} × 𝐴) → (inl‘(2nd𝐶)) = ⟨∅, (2nd𝐶)⟩)
1912, 18eqtr4d 2781 . . . 4 (𝐶 ∈ ({∅} × 𝐴) → 𝐶 = (inl‘(2nd𝐶)))
20 fveq2 6756 . . . . 5 (𝑥 = (2nd𝐶) → (inl‘𝑥) = (inl‘(2nd𝐶)))
2120rspceeqv 3567 . . . 4 (((2nd𝐶) ∈ 𝐴𝐶 = (inl‘(2nd𝐶))) → ∃𝑥𝐴 𝐶 = (inl‘𝑥))
225, 19, 21syl2anc 583 . . 3 (𝐶 ∈ ({∅} × 𝐴) → ∃𝑥𝐴 𝐶 = (inl‘𝑥))
23 xp2nd 7837 . . . 4 (𝐶 ∈ ({1o} × 𝐵) → (2nd𝐶) ∈ 𝐵)
24 1st2nd2 7843 . . . . . 6 (𝐶 ∈ ({1o} × 𝐵) → 𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩)
25 xp1st 7836 . . . . . . 7 (𝐶 ∈ ({1o} × 𝐵) → (1st𝐶) ∈ {1o})
26 elsni 4575 . . . . . . 7 ((1st𝐶) ∈ {1o} → (1st𝐶) = 1o)
27 opeq1 4801 . . . . . . . 8 ((1st𝐶) = 1o → ⟨(1st𝐶), (2nd𝐶)⟩ = ⟨1o, (2nd𝐶)⟩)
2827eqeq2d 2749 . . . . . . 7 ((1st𝐶) = 1o → (𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩ ↔ 𝐶 = ⟨1o, (2nd𝐶)⟩))
2925, 26, 283syl 18 . . . . . 6 (𝐶 ∈ ({1o} × 𝐵) → (𝐶 = ⟨(1st𝐶), (2nd𝐶)⟩ ↔ 𝐶 = ⟨1o, (2nd𝐶)⟩))
3024, 29mpbid 231 . . . . 5 (𝐶 ∈ ({1o} × 𝐵) → 𝐶 = ⟨1o, (2nd𝐶)⟩)
31 fvexd 6771 . . . . . 6 (𝐶 ∈ ({1o} × 𝐵) → (2nd𝐶) ∈ V)
32 opex 5373 . . . . . 6 ⟨1o, (2nd𝐶)⟩ ∈ V
33 opeq2 4802 . . . . . . 7 (𝑧 = (2nd𝐶) → ⟨1o, 𝑧⟩ = ⟨1o, (2nd𝐶)⟩)
34 df-inr 9592 . . . . . . 7 inr = (𝑧 ∈ V ↦ ⟨1o, 𝑧⟩)
3533, 34fvmptg 6855 . . . . . 6 (((2nd𝐶) ∈ V ∧ ⟨1o, (2nd𝐶)⟩ ∈ V) → (inr‘(2nd𝐶)) = ⟨1o, (2nd𝐶)⟩)
3631, 32, 35sylancl 585 . . . . 5 (𝐶 ∈ ({1o} × 𝐵) → (inr‘(2nd𝐶)) = ⟨1o, (2nd𝐶)⟩)
3730, 36eqtr4d 2781 . . . 4 (𝐶 ∈ ({1o} × 𝐵) → 𝐶 = (inr‘(2nd𝐶)))
38 fveq2 6756 . . . . 5 (𝑥 = (2nd𝐶) → (inr‘𝑥) = (inr‘(2nd𝐶)))
3938rspceeqv 3567 . . . 4 (((2nd𝐶) ∈ 𝐵𝐶 = (inr‘(2nd𝐶))) → ∃𝑥𝐵 𝐶 = (inr‘𝑥))
4023, 37, 39syl2anc 583 . . 3 (𝐶 ∈ ({1o} × 𝐵) → ∃𝑥𝐵 𝐶 = (inr‘𝑥))
4122, 40orim12i 905 . 2 ((𝐶 ∈ ({∅} × 𝐴) ∨ 𝐶 ∈ ({1o} × 𝐵)) → (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
424, 41syl 17 1 (𝐶 ∈ (𝐴𝐵) → (∃𝑥𝐴 𝐶 = (inl‘𝑥) ∨ ∃𝑥𝐵 𝐶 = (inr‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 843   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cun 3881  c0 4253  {csn 4558  cop 4564   × cxp 5578  cfv 6418  1st c1st 7802  2nd c2nd 7803  1oc1o 8260  cdju 9587  inlcinl 9588  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805  df-dju 9590  df-inl 9591  df-inr 9592
This theorem is referenced by:  djuss  9609  djuun  9615  updjud  9623
  Copyright terms: Public domain W3C validator