MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djur Structured version   Visualization version   GIF version

Theorem djur 9911
Description: A member of a disjoint union can be mapped from one of the classes which produced it. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djur (𝐢 ∈ (𝐴 βŠ” 𝐡) β†’ (βˆƒπ‘₯ ∈ 𝐴 𝐢 = (inlβ€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 𝐡 𝐢 = (inrβ€˜π‘₯)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐢

Proof of Theorem djur
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dju 9893 . . . 4 (𝐴 βŠ” 𝐡) = (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡))
21eleq2i 2826 . . 3 (𝐢 ∈ (𝐴 βŠ” 𝐡) ↔ 𝐢 ∈ (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡)))
3 elun 4148 . . 3 (𝐢 ∈ (({βˆ…} Γ— 𝐴) βˆͺ ({1o} Γ— 𝐡)) ↔ (𝐢 ∈ ({βˆ…} Γ— 𝐴) ∨ 𝐢 ∈ ({1o} Γ— 𝐡)))
42, 3sylbb 218 . 2 (𝐢 ∈ (𝐴 βŠ” 𝐡) β†’ (𝐢 ∈ ({βˆ…} Γ— 𝐴) ∨ 𝐢 ∈ ({1o} Γ— 𝐡)))
5 xp2nd 8005 . . . 4 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ (2nd β€˜πΆ) ∈ 𝐴)
6 1st2nd2 8011 . . . . . 6 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ 𝐢 = ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩)
7 xp1st 8004 . . . . . . 7 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ (1st β€˜πΆ) ∈ {βˆ…})
8 elsni 4645 . . . . . . 7 ((1st β€˜πΆ) ∈ {βˆ…} β†’ (1st β€˜πΆ) = βˆ…)
9 opeq1 4873 . . . . . . . 8 ((1st β€˜πΆ) = βˆ… β†’ ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩ = βŸ¨βˆ…, (2nd β€˜πΆ)⟩)
109eqeq2d 2744 . . . . . . 7 ((1st β€˜πΆ) = βˆ… β†’ (𝐢 = ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩ ↔ 𝐢 = βŸ¨βˆ…, (2nd β€˜πΆ)⟩))
117, 8, 103syl 18 . . . . . 6 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ (𝐢 = ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩ ↔ 𝐢 = βŸ¨βˆ…, (2nd β€˜πΆ)⟩))
126, 11mpbid 231 . . . . 5 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ 𝐢 = βŸ¨βˆ…, (2nd β€˜πΆ)⟩)
13 fvexd 6904 . . . . . 6 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ (2nd β€˜πΆ) ∈ V)
14 opex 5464 . . . . . 6 βŸ¨βˆ…, (2nd β€˜πΆ)⟩ ∈ V
15 opeq2 4874 . . . . . . 7 (𝑦 = (2nd β€˜πΆ) β†’ βŸ¨βˆ…, π‘¦βŸ© = βŸ¨βˆ…, (2nd β€˜πΆ)⟩)
16 df-inl 9894 . . . . . . 7 inl = (𝑦 ∈ V ↦ βŸ¨βˆ…, π‘¦βŸ©)
1715, 16fvmptg 6994 . . . . . 6 (((2nd β€˜πΆ) ∈ V ∧ βŸ¨βˆ…, (2nd β€˜πΆ)⟩ ∈ V) β†’ (inlβ€˜(2nd β€˜πΆ)) = βŸ¨βˆ…, (2nd β€˜πΆ)⟩)
1813, 14, 17sylancl 587 . . . . 5 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ (inlβ€˜(2nd β€˜πΆ)) = βŸ¨βˆ…, (2nd β€˜πΆ)⟩)
1912, 18eqtr4d 2776 . . . 4 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ 𝐢 = (inlβ€˜(2nd β€˜πΆ)))
20 fveq2 6889 . . . . 5 (π‘₯ = (2nd β€˜πΆ) β†’ (inlβ€˜π‘₯) = (inlβ€˜(2nd β€˜πΆ)))
2120rspceeqv 3633 . . . 4 (((2nd β€˜πΆ) ∈ 𝐴 ∧ 𝐢 = (inlβ€˜(2nd β€˜πΆ))) β†’ βˆƒπ‘₯ ∈ 𝐴 𝐢 = (inlβ€˜π‘₯))
225, 19, 21syl2anc 585 . . 3 (𝐢 ∈ ({βˆ…} Γ— 𝐴) β†’ βˆƒπ‘₯ ∈ 𝐴 𝐢 = (inlβ€˜π‘₯))
23 xp2nd 8005 . . . 4 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ (2nd β€˜πΆ) ∈ 𝐡)
24 1st2nd2 8011 . . . . . 6 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ 𝐢 = ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩)
25 xp1st 8004 . . . . . . 7 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ (1st β€˜πΆ) ∈ {1o})
26 elsni 4645 . . . . . . 7 ((1st β€˜πΆ) ∈ {1o} β†’ (1st β€˜πΆ) = 1o)
27 opeq1 4873 . . . . . . . 8 ((1st β€˜πΆ) = 1o β†’ ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩ = ⟨1o, (2nd β€˜πΆ)⟩)
2827eqeq2d 2744 . . . . . . 7 ((1st β€˜πΆ) = 1o β†’ (𝐢 = ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩ ↔ 𝐢 = ⟨1o, (2nd β€˜πΆ)⟩))
2925, 26, 283syl 18 . . . . . 6 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ (𝐢 = ⟨(1st β€˜πΆ), (2nd β€˜πΆ)⟩ ↔ 𝐢 = ⟨1o, (2nd β€˜πΆ)⟩))
3024, 29mpbid 231 . . . . 5 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ 𝐢 = ⟨1o, (2nd β€˜πΆ)⟩)
31 fvexd 6904 . . . . . 6 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ (2nd β€˜πΆ) ∈ V)
32 opex 5464 . . . . . 6 ⟨1o, (2nd β€˜πΆ)⟩ ∈ V
33 opeq2 4874 . . . . . . 7 (𝑧 = (2nd β€˜πΆ) β†’ ⟨1o, π‘§βŸ© = ⟨1o, (2nd β€˜πΆ)⟩)
34 df-inr 9895 . . . . . . 7 inr = (𝑧 ∈ V ↦ ⟨1o, π‘§βŸ©)
3533, 34fvmptg 6994 . . . . . 6 (((2nd β€˜πΆ) ∈ V ∧ ⟨1o, (2nd β€˜πΆ)⟩ ∈ V) β†’ (inrβ€˜(2nd β€˜πΆ)) = ⟨1o, (2nd β€˜πΆ)⟩)
3631, 32, 35sylancl 587 . . . . 5 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ (inrβ€˜(2nd β€˜πΆ)) = ⟨1o, (2nd β€˜πΆ)⟩)
3730, 36eqtr4d 2776 . . . 4 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ 𝐢 = (inrβ€˜(2nd β€˜πΆ)))
38 fveq2 6889 . . . . 5 (π‘₯ = (2nd β€˜πΆ) β†’ (inrβ€˜π‘₯) = (inrβ€˜(2nd β€˜πΆ)))
3938rspceeqv 3633 . . . 4 (((2nd β€˜πΆ) ∈ 𝐡 ∧ 𝐢 = (inrβ€˜(2nd β€˜πΆ))) β†’ βˆƒπ‘₯ ∈ 𝐡 𝐢 = (inrβ€˜π‘₯))
4023, 37, 39syl2anc 585 . . 3 (𝐢 ∈ ({1o} Γ— 𝐡) β†’ βˆƒπ‘₯ ∈ 𝐡 𝐢 = (inrβ€˜π‘₯))
4122, 40orim12i 908 . 2 ((𝐢 ∈ ({βˆ…} Γ— 𝐴) ∨ 𝐢 ∈ ({1o} Γ— 𝐡)) β†’ (βˆƒπ‘₯ ∈ 𝐴 𝐢 = (inlβ€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 𝐡 𝐢 = (inrβ€˜π‘₯)))
424, 41syl 17 1 (𝐢 ∈ (𝐴 βŠ” 𝐡) β†’ (βˆƒπ‘₯ ∈ 𝐴 𝐢 = (inlβ€˜π‘₯) ∨ βˆƒπ‘₯ ∈ 𝐡 𝐢 = (inrβ€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∨ wo 846   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  Vcvv 3475   βˆͺ cun 3946  βˆ…c0 4322  {csn 4628  βŸ¨cop 4634   Γ— cxp 5674  β€˜cfv 6541  1st c1st 7970  2nd c2nd 7971  1oc1o 8456   βŠ” cdju 9890  inlcinl 9891  inrcinr 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6493  df-fun 6543  df-fv 6549  df-1st 7972  df-2nd 7973  df-dju 9893  df-inl 9894  df-inr 9895
This theorem is referenced by:  djuss  9912  djuun  9918  updjud  9926
  Copyright terms: Public domain W3C validator