| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version | ||
| Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cdju 9851 | . 2 class (𝐴 ⊔ 𝐵) |
| 4 | c0 4296 | . . . . 5 class ∅ | |
| 5 | 4 | csn 4589 | . . . 4 class {∅} |
| 6 | 5, 1 | cxp 5636 | . . 3 class ({∅} × 𝐴) |
| 7 | c1o 8427 | . . . . 5 class 1o | |
| 8 | 7 | csn 4589 | . . . 4 class {1o} |
| 9 | 8, 2 | cxp 5636 | . . 3 class ({1o} × 𝐵) |
| 10 | 6, 9 | cun 3912 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 11 | 3, 10 | wceq 1540 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djueq12 9857 nfdju 9860 djuex 9861 djuexb 9862 djulcl 9863 djurcl 9864 djur 9872 djuunxp 9874 eldju2ndl 9877 eldju2ndr 9878 djuun 9879 undjudom 10121 endjudisj 10122 djuen 10123 dju1dif 10126 dju1p1e2 10127 xp2dju 10130 djucomen 10131 djuassen 10132 xpdjuen 10133 mapdjuen 10134 djudom1 10136 djuxpdom 10139 djufi 10140 djuinf 10142 infdju1 10143 ficardadju 10153 pwdjudom 10168 isfin4p1 10268 alephadd 10530 canthp1lem2 10606 |
| Copyright terms: Public domain | W3C validator |