Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version |
Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 9365 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 4227 | . . . . 5 class ∅ | |
5 | 4 | csn 4525 | . . . 4 class {∅} |
6 | 5, 1 | cxp 5525 | . . 3 class ({∅} × 𝐴) |
7 | c1o 8110 | . . . . 5 class 1o | |
8 | 7 | csn 4525 | . . . 4 class {1o} |
9 | 8, 2 | cxp 5525 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3858 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1538 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: djueq12 9371 nfdju 9374 djuex 9375 djuexb 9376 djulcl 9377 djurcl 9378 djur 9386 djuunxp 9388 eldju2ndl 9391 eldju2ndr 9392 djuun 9393 undjudom 9632 endjudisj 9633 djuen 9634 dju1dif 9637 dju1p1e2 9638 xp2dju 9641 djucomen 9642 djuassen 9643 xpdjuen 9644 mapdjuen 9645 djudom1 9647 djuxpdom 9650 djufi 9651 djuinf 9653 infdju1 9654 ficardadju 9664 pwdjudom 9681 isfin4p1 9780 alephadd 10042 canthp1lem2 10118 |
Copyright terms: Public domain | W3C validator |