| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version | ||
| Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cdju 9910 | . 2 class (𝐴 ⊔ 𝐵) |
| 4 | c0 4308 | . . . . 5 class ∅ | |
| 5 | 4 | csn 4601 | . . . 4 class {∅} |
| 6 | 5, 1 | cxp 5652 | . . 3 class ({∅} × 𝐴) |
| 7 | c1o 8471 | . . . . 5 class 1o | |
| 8 | 7 | csn 4601 | . . . 4 class {1o} |
| 9 | 8, 2 | cxp 5652 | . . 3 class ({1o} × 𝐵) |
| 10 | 6, 9 | cun 3924 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 11 | 3, 10 | wceq 1540 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djueq12 9916 nfdju 9919 djuex 9920 djuexb 9921 djulcl 9922 djurcl 9923 djur 9931 djuunxp 9933 eldju2ndl 9936 eldju2ndr 9937 djuun 9938 undjudom 10180 endjudisj 10181 djuen 10182 dju1dif 10185 dju1p1e2 10186 xp2dju 10189 djucomen 10190 djuassen 10191 xpdjuen 10192 mapdjuen 10193 djudom1 10195 djuxpdom 10198 djufi 10199 djuinf 10201 infdju1 10202 ficardadju 10212 pwdjudom 10227 isfin4p1 10327 alephadd 10589 canthp1lem2 10665 |
| Copyright terms: Public domain | W3C validator |