| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version | ||
| Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cdju 9858 | . 2 class (𝐴 ⊔ 𝐵) |
| 4 | c0 4299 | . . . . 5 class ∅ | |
| 5 | 4 | csn 4592 | . . . 4 class {∅} |
| 6 | 5, 1 | cxp 5639 | . . 3 class ({∅} × 𝐴) |
| 7 | c1o 8430 | . . . . 5 class 1o | |
| 8 | 7 | csn 4592 | . . . 4 class {1o} |
| 9 | 8, 2 | cxp 5639 | . . 3 class ({1o} × 𝐵) |
| 10 | 6, 9 | cun 3915 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 11 | 3, 10 | wceq 1540 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djueq12 9864 nfdju 9867 djuex 9868 djuexb 9869 djulcl 9870 djurcl 9871 djur 9879 djuunxp 9881 eldju2ndl 9884 eldju2ndr 9885 djuun 9886 undjudom 10128 endjudisj 10129 djuen 10130 dju1dif 10133 dju1p1e2 10134 xp2dju 10137 djucomen 10138 djuassen 10139 xpdjuen 10140 mapdjuen 10141 djudom1 10143 djuxpdom 10146 djufi 10147 djuinf 10149 infdju1 10150 ficardadju 10160 pwdjudom 10175 isfin4p1 10275 alephadd 10537 canthp1lem2 10613 |
| Copyright terms: Public domain | W3C validator |