| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version | ||
| Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cdju 9827 | . 2 class (𝐴 ⊔ 𝐵) |
| 4 | c0 4292 | . . . . 5 class ∅ | |
| 5 | 4 | csn 4585 | . . . 4 class {∅} |
| 6 | 5, 1 | cxp 5629 | . . 3 class ({∅} × 𝐴) |
| 7 | c1o 8404 | . . . . 5 class 1o | |
| 8 | 7 | csn 4585 | . . . 4 class {1o} |
| 9 | 8, 2 | cxp 5629 | . . 3 class ({1o} × 𝐵) |
| 10 | 6, 9 | cun 3909 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 11 | 3, 10 | wceq 1540 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djueq12 9833 nfdju 9836 djuex 9837 djuexb 9838 djulcl 9839 djurcl 9840 djur 9848 djuunxp 9850 eldju2ndl 9853 eldju2ndr 9854 djuun 9855 undjudom 10097 endjudisj 10098 djuen 10099 dju1dif 10102 dju1p1e2 10103 xp2dju 10106 djucomen 10107 djuassen 10108 xpdjuen 10109 mapdjuen 10110 djudom1 10112 djuxpdom 10115 djufi 10116 djuinf 10118 infdju1 10119 ficardadju 10129 pwdjudom 10144 isfin4p1 10244 alephadd 10506 canthp1lem2 10582 |
| Copyright terms: Public domain | W3C validator |