![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version |
Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 9893 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 4323 | . . . . 5 class ∅ | |
5 | 4 | csn 4629 | . . . 4 class {∅} |
6 | 5, 1 | cxp 5675 | . . 3 class ({∅} × 𝐴) |
7 | c1o 8459 | . . . . 5 class 1o | |
8 | 7 | csn 4629 | . . . 4 class {1o} |
9 | 8, 2 | cxp 5675 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3947 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1542 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: djueq12 9899 nfdju 9902 djuex 9903 djuexb 9904 djulcl 9905 djurcl 9906 djur 9914 djuunxp 9916 eldju2ndl 9919 eldju2ndr 9920 djuun 9921 undjudom 10162 endjudisj 10163 djuen 10164 dju1dif 10167 dju1p1e2 10168 xp2dju 10171 djucomen 10172 djuassen 10173 xpdjuen 10174 mapdjuen 10175 djudom1 10177 djuxpdom 10180 djufi 10181 djuinf 10183 infdju1 10184 ficardadju 10194 pwdjudom 10211 isfin4p1 10310 alephadd 10572 canthp1lem2 10648 |
Copyright terms: Public domain | W3C validator |