Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version |
Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 9562 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 4254 | . . . . 5 class ∅ | |
5 | 4 | csn 4558 | . . . 4 class {∅} |
6 | 5, 1 | cxp 5577 | . . 3 class ({∅} × 𝐴) |
7 | c1o 8237 | . . . . 5 class 1o | |
8 | 7 | csn 4558 | . . . 4 class {1o} |
9 | 8, 2 | cxp 5577 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3882 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1543 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: djueq12 9568 nfdju 9571 djuex 9572 djuexb 9573 djulcl 9574 djurcl 9575 djur 9583 djuunxp 9585 eldju2ndl 9588 eldju2ndr 9589 djuun 9590 undjudom 9829 endjudisj 9830 djuen 9831 dju1dif 9834 dju1p1e2 9835 xp2dju 9838 djucomen 9839 djuassen 9840 xpdjuen 9841 mapdjuen 9842 djudom1 9844 djuxpdom 9847 djufi 9848 djuinf 9850 infdju1 9851 ficardadju 9861 pwdjudom 9878 isfin4p1 9977 alephadd 10239 canthp1lem2 10315 |
Copyright terms: Public domain | W3C validator |