![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version |
Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 9935 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 4338 | . . . . 5 class ∅ | |
5 | 4 | csn 4630 | . . . 4 class {∅} |
6 | 5, 1 | cxp 5686 | . . 3 class ({∅} × 𝐴) |
7 | c1o 8497 | . . . . 5 class 1o | |
8 | 7 | csn 4630 | . . . 4 class {1o} |
9 | 8, 2 | cxp 5686 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3960 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1536 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: djueq12 9941 nfdju 9944 djuex 9945 djuexb 9946 djulcl 9947 djurcl 9948 djur 9956 djuunxp 9958 eldju2ndl 9961 eldju2ndr 9962 djuun 9963 undjudom 10205 endjudisj 10206 djuen 10207 dju1dif 10210 dju1p1e2 10211 xp2dju 10214 djucomen 10215 djuassen 10216 xpdjuen 10217 mapdjuen 10218 djudom1 10220 djuxpdom 10223 djufi 10224 djuinf 10226 infdju1 10227 ficardadju 10237 pwdjudom 10252 isfin4p1 10352 alephadd 10614 canthp1lem2 10690 |
Copyright terms: Public domain | W3C validator |