| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version | ||
| Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cdju 9786 | . 2 class (𝐴 ⊔ 𝐵) |
| 4 | c0 4278 | . . . . 5 class ∅ | |
| 5 | 4 | csn 4571 | . . . 4 class {∅} |
| 6 | 5, 1 | cxp 5609 | . . 3 class ({∅} × 𝐴) |
| 7 | c1o 8373 | . . . . 5 class 1o | |
| 8 | 7 | csn 4571 | . . . 4 class {1o} |
| 9 | 8, 2 | cxp 5609 | . . 3 class ({1o} × 𝐵) |
| 10 | 6, 9 | cun 3895 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 11 | 3, 10 | wceq 1541 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djueq12 9792 nfdju 9795 djuex 9796 djuexb 9797 djulcl 9798 djurcl 9799 djur 9807 djuunxp 9809 eldju2ndl 9812 eldju2ndr 9813 djuun 9814 undjudom 10054 endjudisj 10055 djuen 10056 dju1dif 10059 dju1p1e2 10060 xp2dju 10063 djucomen 10064 djuassen 10065 xpdjuen 10066 mapdjuen 10067 djudom1 10069 djuxpdom 10072 djufi 10073 djuinf 10075 infdju1 10076 ficardadju 10086 pwdjudom 10101 isfin4p1 10201 alephadd 10463 canthp1lem2 10539 |
| Copyright terms: Public domain | W3C validator |