![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version |
Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
Ref | Expression |
---|---|
df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cdju 9967 | . 2 class (𝐴 ⊔ 𝐵) |
4 | c0 4352 | . . . . 5 class ∅ | |
5 | 4 | csn 4648 | . . . 4 class {∅} |
6 | 5, 1 | cxp 5698 | . . 3 class ({∅} × 𝐴) |
7 | c1o 8515 | . . . . 5 class 1o | |
8 | 7 | csn 4648 | . . . 4 class {1o} |
9 | 8, 2 | cxp 5698 | . . 3 class ({1o} × 𝐵) |
10 | 6, 9 | cun 3974 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
11 | 3, 10 | wceq 1537 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: djueq12 9973 nfdju 9976 djuex 9977 djuexb 9978 djulcl 9979 djurcl 9980 djur 9988 djuunxp 9990 eldju2ndl 9993 eldju2ndr 9994 djuun 9995 undjudom 10237 endjudisj 10238 djuen 10239 dju1dif 10242 dju1p1e2 10243 xp2dju 10246 djucomen 10247 djuassen 10248 xpdjuen 10249 mapdjuen 10250 djudom1 10252 djuxpdom 10255 djufi 10256 djuinf 10258 infdju1 10259 ficardadju 10269 pwdjudom 10284 isfin4p1 10384 alephadd 10646 canthp1lem2 10722 |
Copyright terms: Public domain | W3C validator |