| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-dju | Structured version Visualization version GIF version | ||
| Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of 𝐴 or 𝐵, tagging each one with whether it came from 𝐴 or 𝐵. (Contributed by Jim Kingdon, 20-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-dju | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cdju 9813 | . 2 class (𝐴 ⊔ 𝐵) |
| 4 | c0 4286 | . . . . 5 class ∅ | |
| 5 | 4 | csn 4579 | . . . 4 class {∅} |
| 6 | 5, 1 | cxp 5621 | . . 3 class ({∅} × 𝐴) |
| 7 | c1o 8388 | . . . . 5 class 1o | |
| 8 | 7 | csn 4579 | . . . 4 class {1o} |
| 9 | 8, 2 | cxp 5621 | . . 3 class ({1o} × 𝐵) |
| 10 | 6, 9 | cun 3903 | . 2 class (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| 11 | 3, 10 | wceq 1540 | 1 wff (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djueq12 9819 nfdju 9822 djuex 9823 djuexb 9824 djulcl 9825 djurcl 9826 djur 9834 djuunxp 9836 eldju2ndl 9839 eldju2ndr 9840 djuun 9841 undjudom 10081 endjudisj 10082 djuen 10083 dju1dif 10086 dju1p1e2 10087 xp2dju 10090 djucomen 10091 djuassen 10092 xpdjuen 10093 mapdjuen 10094 djudom1 10096 djuxpdom 10099 djufi 10100 djuinf 10102 infdju1 10103 ficardadju 10113 pwdjudom 10128 isfin4p1 10228 alephadd 10490 canthp1lem2 10566 |
| Copyright terms: Public domain | W3C validator |