MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndinl Structured version   Visualization version   GIF version

Theorem 2ndinl 9828
Description: The second component of the value of a left injection is its argument. (Contributed by AV, 27-Jun-2022.)
Assertion
Ref Expression
2ndinl (𝑋𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋)

Proof of Theorem 2ndinl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9802 . . . 4 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4825 . . . 4 (𝑥 = 𝑋 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑋⟩)
3 elex 3458 . . . 4 (𝑋𝑉𝑋 ∈ V)
4 opex 5407 . . . . 5 ⟨∅, 𝑋⟩ ∈ V
54a1i 11 . . . 4 (𝑋𝑉 → ⟨∅, 𝑋⟩ ∈ V)
61, 2, 3, 5fvmptd3 6958 . . 3 (𝑋𝑉 → (inl‘𝑋) = ⟨∅, 𝑋⟩)
76fveq2d 6832 . 2 (𝑋𝑉 → (2nd ‘(inl‘𝑋)) = (2nd ‘⟨∅, 𝑋⟩))
8 0ex 5247 . . 3 ∅ ∈ V
9 op2ndg 7940 . . 3 ((∅ ∈ V ∧ 𝑋𝑉) → (2nd ‘⟨∅, 𝑋⟩) = 𝑋)
108, 9mpan 690 . 2 (𝑋𝑉 → (2nd ‘⟨∅, 𝑋⟩) = 𝑋)
117, 10eqtrd 2768 1 (𝑋𝑉 → (2nd ‘(inl‘𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  cop 4581  cfv 6486  2nd c2nd 7926  inlcinl 9799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fv 6494  df-2nd 7928  df-inl 9802
This theorem is referenced by:  updjudhcoinlf  9832
  Copyright terms: Public domain W3C validator