![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djulcl | Structured version Visualization version GIF version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djulcl | β’ (πΆ β π΄ β (inlβπΆ) β (π΄ β π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9901 | . . 3 β’ inl = (π₯ β V β¦ β¨β , π₯β©) | |
2 | opeq2 4875 | . . 3 β’ (π₯ = πΆ β β¨β , π₯β© = β¨β , πΆβ©) | |
3 | elex 3491 | . . 3 β’ (πΆ β π΄ β πΆ β V) | |
4 | 0ex 5308 | . . . . 5 β’ β β V | |
5 | 4 | snid 4665 | . . . 4 β’ β β {β } |
6 | opelxpi 5714 | . . . 4 β’ ((β β {β } β§ πΆ β π΄) β β¨β , πΆβ© β ({β } Γ π΄)) | |
7 | 5, 6 | mpan 686 | . . 3 β’ (πΆ β π΄ β β¨β , πΆβ© β ({β } Γ π΄)) |
8 | 1, 2, 3, 7 | fvmptd3 7022 | . 2 β’ (πΆ β π΄ β (inlβπΆ) = β¨β , πΆβ©) |
9 | elun1 4177 | . . . 4 β’ (β¨β , πΆβ© β ({β } Γ π΄) β β¨β , πΆβ© β (({β } Γ π΄) βͺ ({1o} Γ π΅))) | |
10 | 7, 9 | syl 17 | . . 3 β’ (πΆ β π΄ β β¨β , πΆβ© β (({β } Γ π΄) βͺ ({1o} Γ π΅))) |
11 | df-dju 9900 | . . 3 β’ (π΄ β π΅) = (({β } Γ π΄) βͺ ({1o} Γ π΅)) | |
12 | 10, 11 | eleqtrrdi 2842 | . 2 β’ (πΆ β π΄ β β¨β , πΆβ© β (π΄ β π΅)) |
13 | 8, 12 | eqeltrd 2831 | 1 β’ (πΆ β π΄ β (inlβπΆ) β (π΄ β π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2104 Vcvv 3472 βͺ cun 3947 β c0 4323 {csn 4629 β¨cop 4635 Γ cxp 5675 βcfv 6544 1oc1o 8463 β cdju 9897 inlcinl 9898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-dju 9900 df-inl 9901 |
This theorem is referenced by: inlresf 9913 updjudhcoinlf 9931 |
Copyright terms: Public domain | W3C validator |