MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulcl Structured version   Visualization version   GIF version

Theorem djulcl 9917
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9909 . . 3 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4848 . . 3 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
3 elex 3478 . . 3 (𝐶𝐴𝐶 ∈ V)
4 0ex 5275 . . . . 5 ∅ ∈ V
54snid 4636 . . . 4 ∅ ∈ {∅}
6 opelxpi 5689 . . . 4 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
75, 6mpan 690 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
81, 2, 3, 7fvmptd3 7006 . 2 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
9 elun1 4155 . . . 4 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
107, 9syl 17 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
11 df-dju 9908 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1210, 11eleqtrrdi 2844 . 2 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
138, 12eqeltrd 2833 1 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Vcvv 3457  cun 3922  c0 4306  {csn 4599  cop 4605   × cxp 5650  cfv 6528  1oc1o 8468  cdju 9905  inlcinl 9906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-iota 6481  df-fun 6530  df-fv 6536  df-dju 9908  df-inl 9909
This theorem is referenced by:  inlresf  9921  updjudhcoinlf  9939
  Copyright terms: Public domain W3C validator