MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulcl Structured version   Visualization version   GIF version

Theorem djulcl 9668
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djulcl (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))

Proof of Theorem djulcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-inl 9660 . . 3 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 opeq2 4805 . . 3 (𝑥 = 𝐶 → ⟨∅, 𝑥⟩ = ⟨∅, 𝐶⟩)
3 elex 3450 . . 3 (𝐶𝐴𝐶 ∈ V)
4 0ex 5231 . . . . 5 ∅ ∈ V
54snid 4597 . . . 4 ∅ ∈ {∅}
6 opelxpi 5626 . . . 4 ((∅ ∈ {∅} ∧ 𝐶𝐴) → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
75, 6mpan 687 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴))
81, 2, 3, 7fvmptd3 6898 . 2 (𝐶𝐴 → (inl‘𝐶) = ⟨∅, 𝐶⟩)
9 elun1 4110 . . . 4 (⟨∅, 𝐶⟩ ∈ ({∅} × 𝐴) → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
107, 9syl 17 . . 3 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
11 df-dju 9659 . . 3 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
1210, 11eleqtrrdi 2850 . 2 (𝐶𝐴 → ⟨∅, 𝐶⟩ ∈ (𝐴𝐵))
138, 12eqeltrd 2839 1 (𝐶𝐴 → (inl‘𝐶) ∈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3432  cun 3885  c0 4256  {csn 4561  cop 4567   × cxp 5587  cfv 6433  1oc1o 8290  cdju 9656  inlcinl 9657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-dju 9659  df-inl 9660
This theorem is referenced by:  inlresf  9672  updjudhcoinlf  9690
  Copyright terms: Public domain W3C validator