Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > djulcl | Structured version Visualization version GIF version |
Description: Left closure of disjoint union. (Contributed by Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djulcl | ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9591 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | opeq2 4802 | . . 3 ⊢ (𝑥 = 𝐶 → 〈∅, 𝑥〉 = 〈∅, 𝐶〉) | |
3 | elex 3440 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
4 | 0ex 5226 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snid 4594 | . . . 4 ⊢ ∅ ∈ {∅} |
6 | opelxpi 5617 | . . . 4 ⊢ ((∅ ∈ {∅} ∧ 𝐶 ∈ 𝐴) → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) | |
7 | 5, 6 | mpan 686 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ ({∅} × 𝐴)) |
8 | 1, 2, 3, 7 | fvmptd3 6880 | . 2 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) = 〈∅, 𝐶〉) |
9 | elun1 4106 | . . . 4 ⊢ (〈∅, 𝐶〉 ∈ ({∅} × 𝐴) → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) | |
10 | 7, 9 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
11 | df-dju 9590 | . . 3 ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) | |
12 | 10, 11 | eleqtrrdi 2850 | . 2 ⊢ (𝐶 ∈ 𝐴 → 〈∅, 𝐶〉 ∈ (𝐴 ⊔ 𝐵)) |
13 | 8, 12 | eqeltrd 2839 | 1 ⊢ (𝐶 ∈ 𝐴 → (inl‘𝐶) ∈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∅c0 4253 {csn 4558 〈cop 4564 × cxp 5578 ‘cfv 6418 1oc1o 8260 ⊔ cdju 9587 inlcinl 9588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-dju 9590 df-inl 9591 |
This theorem is referenced by: inlresf 9603 updjudhcoinlf 9621 |
Copyright terms: Public domain | W3C validator |