MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-inr Structured version   Visualization version   GIF version

Definition df-inr 9661
Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
Assertion
Ref Expression
df-inr inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)

Detailed syntax breakdown of Definition df-inr
StepHypRef Expression
1 cinr 9658 . 2 class inr
2 vx . . 3 setvar 𝑥
3 cvv 3432 . . 3 class V
4 c1o 8290 . . . 4 class 1o
52cv 1538 . . . 4 class 𝑥
64, 5cop 4567 . . 3 class ⟨1o, 𝑥
72, 3, 6cmpt 5157 . 2 class (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
81, 7wceq 1539 1 wff inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
Colors of variables: wff setvar class
This definition is referenced by:  djurcl  9669  djurf1o  9671  inrresf  9674  djur  9677  djuss  9678  djuun  9684  1stinr  9687  2ndinr  9688
  Copyright terms: Public domain W3C validator