MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-inr Structured version   Visualization version   GIF version

Definition df-inr 9856
Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.)
Assertion
Ref Expression
df-inr inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)

Detailed syntax breakdown of Definition df-inr
StepHypRef Expression
1 cinr 9853 . 2 class inr
2 vx . . 3 setvar 𝑥
3 cvv 3447 . . 3 class V
4 c1o 8427 . . . 4 class 1o
52cv 1539 . . . 4 class 𝑥
64, 5cop 4595 . . 3 class ⟨1o, 𝑥
72, 3, 6cmpt 5188 . 2 class (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
81, 7wceq 1540 1 wff inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
Colors of variables: wff setvar class
This definition is referenced by:  djurcl  9864  djurf1o  9866  inrresf  9869  djur  9872  djuss  9873  djuun  9879  1stinr  9882  2ndinr  9883
  Copyright terms: Public domain W3C validator