| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-inr | Structured version Visualization version GIF version | ||
| Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| df-inr | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cinr 9919 | . 2 class inr | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3464 | . . 3 class V | |
| 4 | c1o 8478 | . . . 4 class 1o | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑥 |
| 6 | 4, 5 | cop 4612 | . . 3 class 〈1o, 𝑥〉 |
| 7 | 2, 3, 6 | cmpt 5206 | . 2 class (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
| 8 | 1, 7 | wceq 1540 | 1 wff inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: djurcl 9930 djurf1o 9932 inrresf 9935 djur 9938 djuss 9939 djuun 9945 1stinr 9948 2ndinr 9949 |
| Copyright terms: Public domain | W3C validator |