|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-inr | Structured version Visualization version GIF version | ||
| Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| df-inr | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cinr 9940 | . 2 class inr | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | c1o 8499 | . . . 4 class 1o | |
| 5 | 2 | cv 1539 | . . . 4 class 𝑥 | 
| 6 | 4, 5 | cop 4632 | . . 3 class 〈1o, 𝑥〉 | 
| 7 | 2, 3, 6 | cmpt 5225 | . 2 class (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | 
| 8 | 1, 7 | wceq 1540 | 1 wff inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: djurcl 9951 djurf1o 9953 inrresf 9956 djur 9959 djuss 9960 djuun 9966 1stinr 9969 2ndinr 9970 | 
| Copyright terms: Public domain | W3C validator |