Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-inr | Structured version Visualization version GIF version |
Description: Right injection of a disjoint union. (Contributed by Mario Carneiro, 21-Jun-2022.) |
Ref | Expression |
---|---|
df-inr | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cinr 9589 | . 2 class inr | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3422 | . . 3 class V | |
4 | c1o 8260 | . . . 4 class 1o | |
5 | 2 | cv 1538 | . . . 4 class 𝑥 |
6 | 4, 5 | cop 4564 | . . 3 class 〈1o, 𝑥〉 |
7 | 2, 3, 6 | cmpt 5153 | . 2 class (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
8 | 1, 7 | wceq 1539 | 1 wff inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
Colors of variables: wff setvar class |
This definition is referenced by: djurcl 9600 djurf1o 9602 inrresf 9605 djur 9608 djuss 9609 djuun 9615 1stinr 9618 2ndinr 9619 |
Copyright terms: Public domain | W3C validator |