MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuss Structured version   Visualization version   GIF version

Theorem djuss 9609
Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))

Proof of Theorem djuss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 9608 . . 3 (𝑥 ∈ (𝐴𝐵) → (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
2 simpr 484 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦))
3 df-inl 9591 . . . . . . . . 9 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
4 opeq2 4802 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑦⟩)
5 elex 3440 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ V)
6 opex 5373 . . . . . . . . . 10 ⟨∅, 𝑦⟩ ∈ V
76a1i 11 . . . . . . . . 9 (𝑦𝐴 → ⟨∅, 𝑦⟩ ∈ V)
83, 4, 5, 7fvmptd3 6880 . . . . . . . 8 (𝑦𝐴 → (inl‘𝑦) = ⟨∅, 𝑦⟩)
98adantr 480 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) = ⟨∅, 𝑦⟩)
102, 9eqtrd 2778 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = ⟨∅, 𝑦⟩)
11 elun1 4106 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ (𝐴𝐵))
12 0ex 5226 . . . . . . . . . 10 ∅ ∈ V
1312prid1 4695 . . . . . . . . 9 ∅ ∈ {∅, 1o}
1411, 13jctil 519 . . . . . . . 8 (𝑦𝐴 → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1514adantr 480 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
16 opelxp 5616 . . . . . . 7 (⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1715, 16sylibr 233 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → ⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
1810, 17eqeltrd 2839 . . . . 5 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
1918rexlimiva 3209 . . . 4 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
20 simpr 484 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦))
21 df-inr 9592 . . . . . . . . 9 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
22 opeq2 4802 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑦⟩)
23 elex 3440 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ V)
24 opex 5373 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
2524a1i 11 . . . . . . . . 9 (𝑦𝐵 → ⟨1o, 𝑦⟩ ∈ V)
2621, 22, 23, 25fvmptd3 6880 . . . . . . . 8 (𝑦𝐵 → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2726adantr 480 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2820, 27eqtrd 2778 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = ⟨1o, 𝑦⟩)
29 elun2 4107 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3029adantr 480 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴𝐵))
31 1oex 8280 . . . . . . . . 9 1o ∈ V
3231prid2 4696 . . . . . . . 8 1o ∈ {∅, 1o}
3330, 32jctil 519 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
34 opelxp 5616 . . . . . . 7 (⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
3533, 34sylibr 233 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → ⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
3628, 35eqeltrd 2839 . . . . 5 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3736rexlimiva 3209 . . . 4 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3819, 37jaoi 853 . . 3 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
391, 38syl 17 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
4039ssriv 3921 1 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 843   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cun 3881  wss 3883  c0 4253  {cpr 4560  cop 4564   × cxp 5578  cfv 6418  1oc1o 8260  cdju 9587  inlcinl 9588  inrcinr 9589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-suc 6257  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-2nd 7805  df-1o 8267  df-dju 9590  df-inl 9591  df-inr 9592
This theorem is referenced by:  djuunxp  9610  djuexALT  9611  eldju1st  9612
  Copyright terms: Public domain W3C validator