MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuss Structured version   Visualization version   GIF version

Theorem djuss 9958
Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))

Proof of Theorem djuss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 9957 . . 3 (𝑥 ∈ (𝐴𝐵) → (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
2 simpr 484 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦))
3 df-inl 9940 . . . . . . . . 9 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
4 opeq2 4879 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑦⟩)
5 elex 3499 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ V)
6 opex 5475 . . . . . . . . . 10 ⟨∅, 𝑦⟩ ∈ V
76a1i 11 . . . . . . . . 9 (𝑦𝐴 → ⟨∅, 𝑦⟩ ∈ V)
83, 4, 5, 7fvmptd3 7039 . . . . . . . 8 (𝑦𝐴 → (inl‘𝑦) = ⟨∅, 𝑦⟩)
98adantr 480 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) = ⟨∅, 𝑦⟩)
102, 9eqtrd 2775 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = ⟨∅, 𝑦⟩)
11 elun1 4192 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ (𝐴𝐵))
12 0ex 5313 . . . . . . . . . 10 ∅ ∈ V
1312prid1 4767 . . . . . . . . 9 ∅ ∈ {∅, 1o}
1411, 13jctil 519 . . . . . . . 8 (𝑦𝐴 → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1514adantr 480 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
16 opelxp 5725 . . . . . . 7 (⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1715, 16sylibr 234 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → ⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
1810, 17eqeltrd 2839 . . . . 5 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
1918rexlimiva 3145 . . . 4 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
20 simpr 484 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦))
21 df-inr 9941 . . . . . . . . 9 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
22 opeq2 4879 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑦⟩)
23 elex 3499 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ V)
24 opex 5475 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
2524a1i 11 . . . . . . . . 9 (𝑦𝐵 → ⟨1o, 𝑦⟩ ∈ V)
2621, 22, 23, 25fvmptd3 7039 . . . . . . . 8 (𝑦𝐵 → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2726adantr 480 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2820, 27eqtrd 2775 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = ⟨1o, 𝑦⟩)
29 elun2 4193 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3029adantr 480 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴𝐵))
31 1oex 8515 . . . . . . . . 9 1o ∈ V
3231prid2 4768 . . . . . . . 8 1o ∈ {∅, 1o}
3330, 32jctil 519 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
34 opelxp 5725 . . . . . . 7 (⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
3533, 34sylibr 234 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → ⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
3628, 35eqeltrd 2839 . . . . 5 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3736rexlimiva 3145 . . . 4 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3819, 37jaoi 857 . . 3 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
391, 38syl 17 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
4039ssriv 3999 1 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  cun 3961  wss 3963  c0 4339  {cpr 4633  cop 4637   × cxp 5687  cfv 6563  1oc1o 8498  cdju 9936  inlcinl 9937  inrcinr 9938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-suc 6392  df-iota 6516  df-fun 6565  df-fv 6571  df-1st 8013  df-2nd 8014  df-1o 8505  df-dju 9939  df-inl 9940  df-inr 9941
This theorem is referenced by:  djuunxp  9959  djuexALT  9960  eldju1st  9961
  Copyright terms: Public domain W3C validator