Step | Hyp | Ref
| Expression |
1 | | djur 9677 |
. . 3
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦 ∈ 𝐵 𝑥 = (inr‘𝑦))) |
2 | | simpr 485 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦)) |
3 | | df-inl 9660 |
. . . . . . . . 9
⊢ inl =
(𝑥 ∈ V ↦
〈∅, 𝑥〉) |
4 | | opeq2 4805 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 〈∅, 𝑥〉 = 〈∅, 𝑦〉) |
5 | | elex 3450 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ V) |
6 | | opex 5379 |
. . . . . . . . . 10
⊢
〈∅, 𝑦〉 ∈ V |
7 | 6 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 〈∅, 𝑦〉 ∈ V) |
8 | 3, 4, 5, 7 | fvmptd3 6898 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → (inl‘𝑦) = 〈∅, 𝑦〉) |
9 | 8 | adantr 481 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → (inl‘𝑦) = 〈∅, 𝑦〉) |
10 | 2, 9 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 = 〈∅, 𝑦〉) |
11 | | elun1 4110 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ (𝐴 ∪ 𝐵)) |
12 | | 0ex 5231 |
. . . . . . . . . 10
⊢ ∅
∈ V |
13 | 12 | prid1 4698 |
. . . . . . . . 9
⊢ ∅
∈ {∅, 1o} |
14 | 11, 13 | jctil 520 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → (∅ ∈ {∅,
1o} ∧ 𝑦
∈ (𝐴 ∪ 𝐵))) |
15 | 14 | adantr 481 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → (∅ ∈ {∅,
1o} ∧ 𝑦
∈ (𝐴 ∪ 𝐵))) |
16 | | opelxp 5625 |
. . . . . . 7
⊢
(〈∅, 𝑦〉 ∈ ({∅, 1o}
× (𝐴 ∪ 𝐵)) ↔ (∅ ∈
{∅, 1o} ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) |
17 | 15, 16 | sylibr 233 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 〈∅, 𝑦〉 ∈ ({∅, 1o}
× (𝐴 ∪ 𝐵))) |
18 | 10, 17 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
19 | 18 | rexlimiva 3210 |
. . . 4
⊢
(∃𝑦 ∈
𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
20 | | simpr 485 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦)) |
21 | | df-inr 9661 |
. . . . . . . . 9
⊢ inr =
(𝑥 ∈ V ↦
〈1o, 𝑥〉) |
22 | | opeq2 4805 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → 〈1o, 𝑥〉 = 〈1o,
𝑦〉) |
23 | | elex 3450 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ V) |
24 | | opex 5379 |
. . . . . . . . . 10
⊢
〈1o, 𝑦〉 ∈ V |
25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 〈1o, 𝑦〉 ∈
V) |
26 | 21, 22, 23, 25 | fvmptd3 6898 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐵 → (inr‘𝑦) = 〈1o, 𝑦〉) |
27 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → (inr‘𝑦) = 〈1o, 𝑦〉) |
28 | 20, 27 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 = 〈1o, 𝑦〉) |
29 | | elun2 4111 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐵 → 𝑦 ∈ (𝐴 ∪ 𝐵)) |
30 | 29 | adantr 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴 ∪ 𝐵)) |
31 | | 1oex 8307 |
. . . . . . . . 9
⊢
1o ∈ V |
32 | 31 | prid2 4699 |
. . . . . . . 8
⊢
1o ∈ {∅, 1o} |
33 | 30, 32 | jctil 520 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → (1o ∈ {∅,
1o} ∧ 𝑦
∈ (𝐴 ∪ 𝐵))) |
34 | | opelxp 5625 |
. . . . . . 7
⊢
(〈1o, 𝑦〉 ∈ ({∅, 1o}
× (𝐴 ∪ 𝐵)) ↔ (1o ∈
{∅, 1o} ∧ 𝑦 ∈ (𝐴 ∪ 𝐵))) |
35 | 33, 34 | sylibr 233 |
. . . . . 6
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 〈1o, 𝑦〉 ∈ ({∅,
1o} × (𝐴
∪ 𝐵))) |
36 | 28, 35 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
37 | 36 | rexlimiva 3210 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
38 | 19, 37 | jaoi 854 |
. . 3
⊢
((∃𝑦 ∈
𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦 ∈ 𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
39 | 1, 38 | syl 17 |
. 2
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → 𝑥 ∈ ({∅, 1o} ×
(𝐴 ∪ 𝐵))) |
40 | 39 | ssriv 3925 |
1
⊢ (𝐴 ⊔ 𝐵) ⊆ ({∅, 1o} ×
(𝐴 ∪ 𝐵)) |