Step | Hyp | Ref
| Expression |
1 | | djur 9910 |
. . 3
β’ (π₯ β (π΄ β π΅) β (βπ¦ β π΄ π₯ = (inlβπ¦) β¨ βπ¦ β π΅ π₯ = (inrβπ¦))) |
2 | | simpr 485 |
. . . . . . 7
β’ ((π¦ β π΄ β§ π₯ = (inlβπ¦)) β π₯ = (inlβπ¦)) |
3 | | df-inl 9893 |
. . . . . . . . 9
β’ inl =
(π₯ β V β¦
β¨β
, π₯β©) |
4 | | opeq2 4873 |
. . . . . . . . 9
β’ (π₯ = π¦ β β¨β
, π₯β© = β¨β
, π¦β©) |
5 | | elex 3492 |
. . . . . . . . 9
β’ (π¦ β π΄ β π¦ β V) |
6 | | opex 5463 |
. . . . . . . . . 10
β’
β¨β
, π¦β© β V |
7 | 6 | a1i 11 |
. . . . . . . . 9
β’ (π¦ β π΄ β β¨β
, π¦β© β V) |
8 | 3, 4, 5, 7 | fvmptd3 7018 |
. . . . . . . 8
β’ (π¦ β π΄ β (inlβπ¦) = β¨β
, π¦β©) |
9 | 8 | adantr 481 |
. . . . . . 7
β’ ((π¦ β π΄ β§ π₯ = (inlβπ¦)) β (inlβπ¦) = β¨β
, π¦β©) |
10 | 2, 9 | eqtrd 2772 |
. . . . . 6
β’ ((π¦ β π΄ β§ π₯ = (inlβπ¦)) β π₯ = β¨β
, π¦β©) |
11 | | elun1 4175 |
. . . . . . . . 9
β’ (π¦ β π΄ β π¦ β (π΄ βͺ π΅)) |
12 | | 0ex 5306 |
. . . . . . . . . 10
β’ β
β V |
13 | 12 | prid1 4765 |
. . . . . . . . 9
β’ β
β {β
, 1o} |
14 | 11, 13 | jctil 520 |
. . . . . . . 8
β’ (π¦ β π΄ β (β
β {β
,
1o} β§ π¦
β (π΄ βͺ π΅))) |
15 | 14 | adantr 481 |
. . . . . . 7
β’ ((π¦ β π΄ β§ π₯ = (inlβπ¦)) β (β
β {β
,
1o} β§ π¦
β (π΄ βͺ π΅))) |
16 | | opelxp 5711 |
. . . . . . 7
β’
(β¨β
, π¦β© β ({β
, 1o}
Γ (π΄ βͺ π΅)) β (β
β
{β
, 1o} β§ π¦ β (π΄ βͺ π΅))) |
17 | 15, 16 | sylibr 233 |
. . . . . 6
β’ ((π¦ β π΄ β§ π₯ = (inlβπ¦)) β β¨β
, π¦β© β ({β
, 1o}
Γ (π΄ βͺ π΅))) |
18 | 10, 17 | eqeltrd 2833 |
. . . . 5
β’ ((π¦ β π΄ β§ π₯ = (inlβπ¦)) β π₯ β ({β
, 1o} Γ
(π΄ βͺ π΅))) |
19 | 18 | rexlimiva 3147 |
. . . 4
β’
(βπ¦ β
π΄ π₯ = (inlβπ¦) β π₯ β ({β
, 1o} Γ
(π΄ βͺ π΅))) |
20 | | simpr 485 |
. . . . . . 7
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β π₯ = (inrβπ¦)) |
21 | | df-inr 9894 |
. . . . . . . . 9
β’ inr =
(π₯ β V β¦
β¨1o, π₯β©) |
22 | | opeq2 4873 |
. . . . . . . . 9
β’ (π₯ = π¦ β β¨1o, π₯β© = β¨1o,
π¦β©) |
23 | | elex 3492 |
. . . . . . . . 9
β’ (π¦ β π΅ β π¦ β V) |
24 | | opex 5463 |
. . . . . . . . . 10
β’
β¨1o, π¦β© β V |
25 | 24 | a1i 11 |
. . . . . . . . 9
β’ (π¦ β π΅ β β¨1o, π¦β© β
V) |
26 | 21, 22, 23, 25 | fvmptd3 7018 |
. . . . . . . 8
β’ (π¦ β π΅ β (inrβπ¦) = β¨1o, π¦β©) |
27 | 26 | adantr 481 |
. . . . . . 7
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β (inrβπ¦) = β¨1o, π¦β©) |
28 | 20, 27 | eqtrd 2772 |
. . . . . 6
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β π₯ = β¨1o, π¦β©) |
29 | | elun2 4176 |
. . . . . . . . 9
β’ (π¦ β π΅ β π¦ β (π΄ βͺ π΅)) |
30 | 29 | adantr 481 |
. . . . . . . 8
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β π¦ β (π΄ βͺ π΅)) |
31 | | 1oex 8472 |
. . . . . . . . 9
β’
1o β V |
32 | 31 | prid2 4766 |
. . . . . . . 8
β’
1o β {β
, 1o} |
33 | 30, 32 | jctil 520 |
. . . . . . 7
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β (1o β {β
,
1o} β§ π¦
β (π΄ βͺ π΅))) |
34 | | opelxp 5711 |
. . . . . . 7
β’
(β¨1o, π¦β© β ({β
, 1o}
Γ (π΄ βͺ π΅)) β (1o β
{β
, 1o} β§ π¦ β (π΄ βͺ π΅))) |
35 | 33, 34 | sylibr 233 |
. . . . . 6
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β β¨1o, π¦β© β ({β
,
1o} Γ (π΄
βͺ π΅))) |
36 | 28, 35 | eqeltrd 2833 |
. . . . 5
β’ ((π¦ β π΅ β§ π₯ = (inrβπ¦)) β π₯ β ({β
, 1o} Γ
(π΄ βͺ π΅))) |
37 | 36 | rexlimiva 3147 |
. . . 4
β’
(βπ¦ β
π΅ π₯ = (inrβπ¦) β π₯ β ({β
, 1o} Γ
(π΄ βͺ π΅))) |
38 | 19, 37 | jaoi 855 |
. . 3
β’
((βπ¦ β
π΄ π₯ = (inlβπ¦) β¨ βπ¦ β π΅ π₯ = (inrβπ¦)) β π₯ β ({β
, 1o} Γ
(π΄ βͺ π΅))) |
39 | 1, 38 | syl 17 |
. 2
β’ (π₯ β (π΄ β π΅) β π₯ β ({β
, 1o} Γ
(π΄ βͺ π΅))) |
40 | 39 | ssriv 3985 |
1
β’ (π΄ β π΅) β ({β
, 1o} Γ
(π΄ βͺ π΅)) |