MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuss Structured version   Visualization version   GIF version

Theorem djuss 9081
Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))

Proof of Theorem djuss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 9080 . . 3 (𝑥 ∈ (𝐴𝐵) → (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
2 simpr 479 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = (inl‘𝑦))
3 df-inl 9064 . . . . . . . . 9 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
4 opeq2 4639 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨∅, 𝑥⟩ = ⟨∅, 𝑦⟩)
5 elex 3414 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ V)
6 opex 5166 . . . . . . . . . 10 ⟨∅, 𝑦⟩ ∈ V
76a1i 11 . . . . . . . . 9 (𝑦𝐴 → ⟨∅, 𝑦⟩ ∈ V)
83, 4, 5, 7fvmptd3 6566 . . . . . . . 8 (𝑦𝐴 → (inl‘𝑦) = ⟨∅, 𝑦⟩)
98adantr 474 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) = ⟨∅, 𝑦⟩)
102, 9eqtrd 2814 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 = ⟨∅, 𝑦⟩)
11 elun1 4003 . . . . . . . . 9 (𝑦𝐴𝑦 ∈ (𝐴𝐵))
12 0ex 5028 . . . . . . . . . 10 ∅ ∈ V
1312prid1 4529 . . . . . . . . 9 ∅ ∈ {∅, 1o}
1411, 13jctil 515 . . . . . . . 8 (𝑦𝐴 → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1514adantr 474 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
16 opelxp 5393 . . . . . . 7 (⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (∅ ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
1715, 16sylibr 226 . . . . . 6 ((𝑦𝐴𝑥 = (inl‘𝑦)) → ⟨∅, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
1810, 17eqeltrd 2859 . . . . 5 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
1918rexlimiva 3210 . . . 4 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
20 simpr 479 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = (inr‘𝑦))
21 df-inr 9065 . . . . . . . . 9 inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
22 opeq2 4639 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨1o, 𝑥⟩ = ⟨1o, 𝑦⟩)
23 elex 3414 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ V)
24 opex 5166 . . . . . . . . . 10 ⟨1o, 𝑦⟩ ∈ V
2524a1i 11 . . . . . . . . 9 (𝑦𝐵 → ⟨1o, 𝑦⟩ ∈ V)
2621, 22, 23, 25fvmptd3 6566 . . . . . . . 8 (𝑦𝐵 → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2726adantr 474 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) = ⟨1o, 𝑦⟩)
2820, 27eqtrd 2814 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 = ⟨1o, 𝑦⟩)
29 elun2 4004 . . . . . . . . 9 (𝑦𝐵𝑦 ∈ (𝐴𝐵))
3029adantr 474 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦 ∈ (𝐴𝐵))
31 1oex 7853 . . . . . . . . 9 1o ∈ V
3231prid2 4530 . . . . . . . 8 1o ∈ {∅, 1o}
3330, 32jctil 515 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
34 opelxp 5393 . . . . . . 7 (⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)) ↔ (1o ∈ {∅, 1o} ∧ 𝑦 ∈ (𝐴𝐵)))
3533, 34sylibr 226 . . . . . 6 ((𝑦𝐵𝑥 = (inr‘𝑦)) → ⟨1o, 𝑦⟩ ∈ ({∅, 1o} × (𝐴𝐵)))
3628, 35eqeltrd 2859 . . . . 5 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3736rexlimiva 3210 . . . 4 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
3819, 37jaoi 846 . . 3 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
391, 38syl 17 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ({∅, 1o} × (𝐴𝐵)))
4039ssriv 3825 1 (𝐴𝐵) ⊆ ({∅, 1o} × (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wa 386  wo 836   = wceq 1601  wcel 2107  wrex 3091  Vcvv 3398  cun 3790  wss 3792  c0 4141  {cpr 4400  cop 4404   × cxp 5355  cfv 6137  1oc1o 7838  cdju 9060  inlcinl 9061  inrcinr 9062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-ord 5981  df-on 5982  df-suc 5984  df-iota 6101  df-fun 6139  df-fv 6145  df-1st 7447  df-2nd 7448  df-1o 7845  df-dju 9063  df-inl 9064  df-inr 9065
This theorem is referenced by:  djuunxp  9082  djuexALT  9083  eldju1st  9084
  Copyright terms: Public domain W3C validator