MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuss Structured version   Visualization version   GIF version

Theorem djuss 9911
Description: A disjoint union is a subclass of a Cartesian product. (Contributed by AV, 25-Jun-2022.)
Assertion
Ref Expression
djuss (𝐴 βŠ” 𝐡) βŠ† ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡))

Proof of Theorem djuss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 djur 9910 . . 3 (π‘₯ ∈ (𝐴 βŠ” 𝐡) β†’ (βˆƒπ‘¦ ∈ 𝐴 π‘₯ = (inlβ€˜π‘¦) ∨ βˆƒπ‘¦ ∈ 𝐡 π‘₯ = (inrβ€˜π‘¦)))
2 simpr 485 . . . . . . 7 ((𝑦 ∈ 𝐴 ∧ π‘₯ = (inlβ€˜π‘¦)) β†’ π‘₯ = (inlβ€˜π‘¦))
3 df-inl 9893 . . . . . . . . 9 inl = (π‘₯ ∈ V ↦ βŸ¨βˆ…, π‘₯⟩)
4 opeq2 4873 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ βŸ¨βˆ…, π‘₯⟩ = βŸ¨βˆ…, π‘¦βŸ©)
5 elex 3492 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ 𝑦 ∈ V)
6 opex 5463 . . . . . . . . . 10 βŸ¨βˆ…, π‘¦βŸ© ∈ V
76a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ βŸ¨βˆ…, π‘¦βŸ© ∈ V)
83, 4, 5, 7fvmptd3 7018 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (inlβ€˜π‘¦) = βŸ¨βˆ…, π‘¦βŸ©)
98adantr 481 . . . . . . 7 ((𝑦 ∈ 𝐴 ∧ π‘₯ = (inlβ€˜π‘¦)) β†’ (inlβ€˜π‘¦) = βŸ¨βˆ…, π‘¦βŸ©)
102, 9eqtrd 2772 . . . . . 6 ((𝑦 ∈ 𝐴 ∧ π‘₯ = (inlβ€˜π‘¦)) β†’ π‘₯ = βŸ¨βˆ…, π‘¦βŸ©)
11 elun1 4175 . . . . . . . . 9 (𝑦 ∈ 𝐴 β†’ 𝑦 ∈ (𝐴 βˆͺ 𝐡))
12 0ex 5306 . . . . . . . . . 10 βˆ… ∈ V
1312prid1 4765 . . . . . . . . 9 βˆ… ∈ {βˆ…, 1o}
1411, 13jctil 520 . . . . . . . 8 (𝑦 ∈ 𝐴 β†’ (βˆ… ∈ {βˆ…, 1o} ∧ 𝑦 ∈ (𝐴 βˆͺ 𝐡)))
1514adantr 481 . . . . . . 7 ((𝑦 ∈ 𝐴 ∧ π‘₯ = (inlβ€˜π‘¦)) β†’ (βˆ… ∈ {βˆ…, 1o} ∧ 𝑦 ∈ (𝐴 βˆͺ 𝐡)))
16 opelxp 5711 . . . . . . 7 (βŸ¨βˆ…, π‘¦βŸ© ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)) ↔ (βˆ… ∈ {βˆ…, 1o} ∧ 𝑦 ∈ (𝐴 βˆͺ 𝐡)))
1715, 16sylibr 233 . . . . . 6 ((𝑦 ∈ 𝐴 ∧ π‘₯ = (inlβ€˜π‘¦)) β†’ βŸ¨βˆ…, π‘¦βŸ© ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
1810, 17eqeltrd 2833 . . . . 5 ((𝑦 ∈ 𝐴 ∧ π‘₯ = (inlβ€˜π‘¦)) β†’ π‘₯ ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
1918rexlimiva 3147 . . . 4 (βˆƒπ‘¦ ∈ 𝐴 π‘₯ = (inlβ€˜π‘¦) β†’ π‘₯ ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
20 simpr 485 . . . . . . 7 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ π‘₯ = (inrβ€˜π‘¦))
21 df-inr 9894 . . . . . . . . 9 inr = (π‘₯ ∈ V ↦ ⟨1o, π‘₯⟩)
22 opeq2 4873 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ⟨1o, π‘₯⟩ = ⟨1o, π‘¦βŸ©)
23 elex 3492 . . . . . . . . 9 (𝑦 ∈ 𝐡 β†’ 𝑦 ∈ V)
24 opex 5463 . . . . . . . . . 10 ⟨1o, π‘¦βŸ© ∈ V
2524a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝐡 β†’ ⟨1o, π‘¦βŸ© ∈ V)
2621, 22, 23, 25fvmptd3 7018 . . . . . . . 8 (𝑦 ∈ 𝐡 β†’ (inrβ€˜π‘¦) = ⟨1o, π‘¦βŸ©)
2726adantr 481 . . . . . . 7 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ (inrβ€˜π‘¦) = ⟨1o, π‘¦βŸ©)
2820, 27eqtrd 2772 . . . . . 6 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ π‘₯ = ⟨1o, π‘¦βŸ©)
29 elun2 4176 . . . . . . . . 9 (𝑦 ∈ 𝐡 β†’ 𝑦 ∈ (𝐴 βˆͺ 𝐡))
3029adantr 481 . . . . . . . 8 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ 𝑦 ∈ (𝐴 βˆͺ 𝐡))
31 1oex 8472 . . . . . . . . 9 1o ∈ V
3231prid2 4766 . . . . . . . 8 1o ∈ {βˆ…, 1o}
3330, 32jctil 520 . . . . . . 7 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ (1o ∈ {βˆ…, 1o} ∧ 𝑦 ∈ (𝐴 βˆͺ 𝐡)))
34 opelxp 5711 . . . . . . 7 (⟨1o, π‘¦βŸ© ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)) ↔ (1o ∈ {βˆ…, 1o} ∧ 𝑦 ∈ (𝐴 βˆͺ 𝐡)))
3533, 34sylibr 233 . . . . . 6 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ ⟨1o, π‘¦βŸ© ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
3628, 35eqeltrd 2833 . . . . 5 ((𝑦 ∈ 𝐡 ∧ π‘₯ = (inrβ€˜π‘¦)) β†’ π‘₯ ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
3736rexlimiva 3147 . . . 4 (βˆƒπ‘¦ ∈ 𝐡 π‘₯ = (inrβ€˜π‘¦) β†’ π‘₯ ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
3819, 37jaoi 855 . . 3 ((βˆƒπ‘¦ ∈ 𝐴 π‘₯ = (inlβ€˜π‘¦) ∨ βˆƒπ‘¦ ∈ 𝐡 π‘₯ = (inrβ€˜π‘¦)) β†’ π‘₯ ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
391, 38syl 17 . 2 (π‘₯ ∈ (𝐴 βŠ” 𝐡) β†’ π‘₯ ∈ ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡)))
4039ssriv 3985 1 (𝐴 βŠ” 𝐡) βŠ† ({βˆ…, 1o} Γ— (𝐴 βˆͺ 𝐡))
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474   βˆͺ cun 3945   βŠ† wss 3947  βˆ…c0 4321  {cpr 4629  βŸ¨cop 4633   Γ— cxp 5673  β€˜cfv 6540  1oc1o 8455   βŠ” cdju 9889  inlcinl 9890  inrcinr 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-suc 6367  df-iota 6492  df-fun 6542  df-fv 6548  df-1st 7971  df-2nd 7972  df-1o 8462  df-dju 9892  df-inl 9893  df-inr 9894
This theorem is referenced by:  djuunxp  9912  djuexALT  9913  eldju1st  9914
  Copyright terms: Public domain W3C validator