![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djulf1o | Structured version Visualization version GIF version |
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djulf1o | ⊢ inl:V–1-1-onto→({∅} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9971 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
2 | 0ex 5325 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | snid 4684 | . . . . 5 ⊢ ∅ ∈ {∅} |
4 | opelxpi 5737 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → 〈∅, 𝑥〉 ∈ ({∅} × V)) | |
5 | 3, 4 | mpan 689 | . . . 4 ⊢ (𝑥 ∈ V → 〈∅, 𝑥〉 ∈ ({∅} × V)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈∅, 𝑥〉 ∈ ({∅} × V)) |
7 | fvexd 6935 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd ‘𝑦) ∈ V) | |
8 | 1st2nd2 8069 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
9 | xp1st 8062 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) ∈ {∅}) | |
10 | elsni 4665 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {∅} → (1st ‘𝑦) = ∅) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) = ∅) |
12 | 11 | opeq1d 4903 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈∅, (2nd ‘𝑦)〉) |
13 | 8, 12 | eqtrd 2780 | . . . . . . 7 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = 〈∅, (2nd ‘𝑦)〉) |
14 | 13 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑦 ∈ ({∅} × V) → (〈∅, 𝑥〉 = 𝑦 ↔ 〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉)) |
15 | eqcom 2747 | . . . . . 6 ⊢ (〈∅, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈∅, 𝑥〉) | |
16 | eqid 2740 | . . . . . . 7 ⊢ ∅ = ∅ | |
17 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
18 | 2, 17 | opth 5496 | . . . . . . 7 ⊢ (〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉 ↔ (∅ = ∅ ∧ 𝑥 = (2nd ‘𝑦))) |
19 | 16, 18 | mpbiran 708 | . . . . . 6 ⊢ (〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
20 | 14, 15, 19 | 3bitr3g 313 | . . . . 5 ⊢ (𝑦 ∈ ({∅} × V) → (𝑦 = 〈∅, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
21 | 20 | bicomd 223 | . . . 4 ⊢ (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈∅, 𝑥〉)) |
22 | 21 | ad2antll 728 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈∅, 𝑥〉)) |
23 | 1, 6, 7, 22 | f1o2d 7704 | . 2 ⊢ (⊤ → inl:V–1-1-onto→({∅} × V)) |
24 | 23 | mptru 1544 | 1 ⊢ inl:V–1-1-onto→({∅} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 〈cop 4654 × cxp 5698 –1-1-onto→wf1o 6572 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 inlcinl 9968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-1st 8030 df-2nd 8031 df-inl 9971 |
This theorem is referenced by: inlresf 9983 inlresf1 9984 djuin 9987 djuun 9995 |
Copyright terms: Public domain | W3C validator |