| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djulf1o | Structured version Visualization version GIF version | ||
| Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| djulf1o | ⊢ inl:V–1-1-onto→({∅} × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 9855 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 0ex 5262 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | 2 | snid 4626 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 4 | opelxpi 5675 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → 〈∅, 𝑥〉 ∈ ({∅} × V)) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ V → 〈∅, 𝑥〉 ∈ ({∅} × V)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈∅, 𝑥〉 ∈ ({∅} × V)) |
| 7 | fvexd 6873 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd ‘𝑦) ∈ V) | |
| 8 | 1st2nd2 8007 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
| 9 | xp1st 8000 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) ∈ {∅}) | |
| 10 | elsni 4606 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {∅} → (1st ‘𝑦) = ∅) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) = ∅) |
| 12 | 11 | opeq1d 4843 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈∅, (2nd ‘𝑦)〉) |
| 13 | 8, 12 | eqtrd 2764 | . . . . . . 7 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = 〈∅, (2nd ‘𝑦)〉) |
| 14 | 13 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑦 ∈ ({∅} × V) → (〈∅, 𝑥〉 = 𝑦 ↔ 〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉)) |
| 15 | eqcom 2736 | . . . . . 6 ⊢ (〈∅, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈∅, 𝑥〉) | |
| 16 | eqid 2729 | . . . . . . 7 ⊢ ∅ = ∅ | |
| 17 | vex 3451 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 18 | 2, 17 | opth 5436 | . . . . . . 7 ⊢ (〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉 ↔ (∅ = ∅ ∧ 𝑥 = (2nd ‘𝑦))) |
| 19 | 16, 18 | mpbiran 709 | . . . . . 6 ⊢ (〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
| 20 | 14, 15, 19 | 3bitr3g 313 | . . . . 5 ⊢ (𝑦 ∈ ({∅} × V) → (𝑦 = 〈∅, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
| 21 | 20 | bicomd 223 | . . . 4 ⊢ (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈∅, 𝑥〉)) |
| 22 | 21 | ad2antll 729 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈∅, 𝑥〉)) |
| 23 | 1, 6, 7, 22 | f1o2d 7643 | . 2 ⊢ (⊤ → inl:V–1-1-onto→({∅} × V)) |
| 24 | 23 | mptru 1547 | 1 ⊢ inl:V–1-1-onto→({∅} × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 〈cop 4595 × cxp 5636 –1-1-onto→wf1o 6510 ‘cfv 6511 1st c1st 7966 2nd c2nd 7967 inlcinl 9852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-1st 7968 df-2nd 7969 df-inl 9855 |
| This theorem is referenced by: inlresf 9867 inlresf1 9868 djuin 9871 djuun 9879 |
| Copyright terms: Public domain | W3C validator |