![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djulf1o | Structured version Visualization version GIF version |
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djulf1o | ⊢ inl:V–1-1-onto→({∅} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9933 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩) | |
2 | 0ex 5311 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | snid 4669 | . . . . 5 ⊢ ∅ ∈ {∅} |
4 | opelxpi 5719 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝑥 ∈ V → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) |
6 | 5 | adantl 480 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) |
7 | fvexd 6917 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd ‘𝑦) ∈ V) | |
8 | 1st2nd2 8038 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨(1st ‘𝑦), (2nd ‘𝑦)⟩) | |
9 | xp1st 8031 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) ∈ {∅}) | |
10 | elsni 4649 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {∅} → (1st ‘𝑦) = ∅) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) = ∅) |
12 | 11 | opeq1d 4884 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → ⟨(1st ‘𝑦), (2nd ‘𝑦)⟩ = ⟨∅, (2nd ‘𝑦)⟩) |
13 | 8, 12 | eqtrd 2768 | . . . . . . 7 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨∅, (2nd ‘𝑦)⟩) |
14 | 13 | eqeq2d 2739 | . . . . . 6 ⊢ (𝑦 ∈ ({∅} × V) → (⟨∅, 𝑥⟩ = 𝑦 ↔ ⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩)) |
15 | eqcom 2735 | . . . . . 6 ⊢ (⟨∅, 𝑥⟩ = 𝑦 ↔ 𝑦 = ⟨∅, 𝑥⟩) | |
16 | eqid 2728 | . . . . . . 7 ⊢ ∅ = ∅ | |
17 | vex 3477 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
18 | 2, 17 | opth 5482 | . . . . . . 7 ⊢ (⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩ ↔ (∅ = ∅ ∧ 𝑥 = (2nd ‘𝑦))) |
19 | 16, 18 | mpbiran 707 | . . . . . 6 ⊢ (⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩ ↔ 𝑥 = (2nd ‘𝑦)) |
20 | 14, 15, 19 | 3bitr3g 312 | . . . . 5 ⊢ (𝑦 ∈ ({∅} × V) → (𝑦 = ⟨∅, 𝑥⟩ ↔ 𝑥 = (2nd ‘𝑦))) |
21 | 20 | bicomd 222 | . . . 4 ⊢ (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩)) |
22 | 21 | ad2antll 727 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩)) |
23 | 1, 6, 7, 22 | f1o2d 7681 | . 2 ⊢ (⊤ → inl:V–1-1-onto→({∅} × V)) |
24 | 23 | mptru 1540 | 1 ⊢ inl:V–1-1-onto→({∅} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 Vcvv 3473 ∅c0 4326 {csn 4632 ⟨cop 4638 × cxp 5680 –1-1-onto→wf1o 6552 ‘cfv 6553 1st c1st 7997 2nd c2nd 7998 inlcinl 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-1st 7999 df-2nd 8000 df-inl 9933 |
This theorem is referenced by: inlresf 9945 inlresf1 9946 djuin 9949 djuun 9957 |
Copyright terms: Public domain | W3C validator |