![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djulf1o | Structured version Visualization version GIF version |
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djulf1o | ⊢ inl:V–1-1-onto→({∅} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9896 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩) | |
2 | 0ex 5300 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | snid 4659 | . . . . 5 ⊢ ∅ ∈ {∅} |
4 | opelxpi 5706 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) | |
5 | 3, 4 | mpan 687 | . . . 4 ⊢ (𝑥 ∈ V → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) |
7 | fvexd 6899 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd ‘𝑦) ∈ V) | |
8 | 1st2nd2 8010 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨(1st ‘𝑦), (2nd ‘𝑦)⟩) | |
9 | xp1st 8003 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) ∈ {∅}) | |
10 | elsni 4640 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {∅} → (1st ‘𝑦) = ∅) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) = ∅) |
12 | 11 | opeq1d 4874 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → ⟨(1st ‘𝑦), (2nd ‘𝑦)⟩ = ⟨∅, (2nd ‘𝑦)⟩) |
13 | 8, 12 | eqtrd 2766 | . . . . . . 7 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨∅, (2nd ‘𝑦)⟩) |
14 | 13 | eqeq2d 2737 | . . . . . 6 ⊢ (𝑦 ∈ ({∅} × V) → (⟨∅, 𝑥⟩ = 𝑦 ↔ ⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩)) |
15 | eqcom 2733 | . . . . . 6 ⊢ (⟨∅, 𝑥⟩ = 𝑦 ↔ 𝑦 = ⟨∅, 𝑥⟩) | |
16 | eqid 2726 | . . . . . . 7 ⊢ ∅ = ∅ | |
17 | vex 3472 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
18 | 2, 17 | opth 5469 | . . . . . . 7 ⊢ (⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩ ↔ (∅ = ∅ ∧ 𝑥 = (2nd ‘𝑦))) |
19 | 16, 18 | mpbiran 706 | . . . . . 6 ⊢ (⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩ ↔ 𝑥 = (2nd ‘𝑦)) |
20 | 14, 15, 19 | 3bitr3g 313 | . . . . 5 ⊢ (𝑦 ∈ ({∅} × V) → (𝑦 = ⟨∅, 𝑥⟩ ↔ 𝑥 = (2nd ‘𝑦))) |
21 | 20 | bicomd 222 | . . . 4 ⊢ (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩)) |
22 | 21 | ad2antll 726 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩)) |
23 | 1, 6, 7, 22 | f1o2d 7656 | . 2 ⊢ (⊤ → inl:V–1-1-onto→({∅} × V)) |
24 | 23 | mptru 1540 | 1 ⊢ inl:V–1-1-onto→({∅} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ⊤wtru 1534 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 {csn 4623 ⟨cop 4629 × cxp 5667 –1-1-onto→wf1o 6535 ‘cfv 6536 1st c1st 7969 2nd c2nd 7970 inlcinl 9893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1st 7971 df-2nd 7972 df-inl 9896 |
This theorem is referenced by: inlresf 9908 inlresf1 9909 djuin 9912 djuun 9920 |
Copyright terms: Public domain | W3C validator |