| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > djulf1o | Structured version Visualization version GIF version | ||
| Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
| Ref | Expression |
|---|---|
| djulf1o | ⊢ inl:V–1-1-onto→({∅} × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl 9921 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) | |
| 2 | 0ex 5282 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | 2 | snid 4643 | . . . . 5 ⊢ ∅ ∈ {∅} |
| 4 | opelxpi 5696 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → 〈∅, 𝑥〉 ∈ ({∅} × V)) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑥 ∈ V → 〈∅, 𝑥〉 ∈ ({∅} × V)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → 〈∅, 𝑥〉 ∈ ({∅} × V)) |
| 7 | fvexd 6896 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd ‘𝑦) ∈ V) | |
| 8 | 1st2nd2 8032 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) | |
| 9 | xp1st 8025 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) ∈ {∅}) | |
| 10 | elsni 4623 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {∅} → (1st ‘𝑦) = ∅) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) = ∅) |
| 12 | 11 | opeq1d 4860 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 〈(1st ‘𝑦), (2nd ‘𝑦)〉 = 〈∅, (2nd ‘𝑦)〉) |
| 13 | 8, 12 | eqtrd 2771 | . . . . . . 7 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = 〈∅, (2nd ‘𝑦)〉) |
| 14 | 13 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑦 ∈ ({∅} × V) → (〈∅, 𝑥〉 = 𝑦 ↔ 〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉)) |
| 15 | eqcom 2743 | . . . . . 6 ⊢ (〈∅, 𝑥〉 = 𝑦 ↔ 𝑦 = 〈∅, 𝑥〉) | |
| 16 | eqid 2736 | . . . . . . 7 ⊢ ∅ = ∅ | |
| 17 | vex 3468 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 18 | 2, 17 | opth 5456 | . . . . . . 7 ⊢ (〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉 ↔ (∅ = ∅ ∧ 𝑥 = (2nd ‘𝑦))) |
| 19 | 16, 18 | mpbiran 709 | . . . . . 6 ⊢ (〈∅, 𝑥〉 = 〈∅, (2nd ‘𝑦)〉 ↔ 𝑥 = (2nd ‘𝑦)) |
| 20 | 14, 15, 19 | 3bitr3g 313 | . . . . 5 ⊢ (𝑦 ∈ ({∅} × V) → (𝑦 = 〈∅, 𝑥〉 ↔ 𝑥 = (2nd ‘𝑦))) |
| 21 | 20 | bicomd 223 | . . . 4 ⊢ (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈∅, 𝑥〉)) |
| 22 | 21 | ad2antll 729 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = 〈∅, 𝑥〉)) |
| 23 | 1, 6, 7, 22 | f1o2d 7666 | . 2 ⊢ (⊤ → inl:V–1-1-onto→({∅} × V)) |
| 24 | 23 | mptru 1547 | 1 ⊢ inl:V–1-1-onto→({∅} × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {csn 4606 〈cop 4612 × cxp 5657 –1-1-onto→wf1o 6535 ‘cfv 6536 1st c1st 7991 2nd c2nd 7992 inlcinl 9918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-1st 7993 df-2nd 7994 df-inl 9921 |
| This theorem is referenced by: inlresf 9933 inlresf1 9934 djuin 9937 djuun 9945 |
| Copyright terms: Public domain | W3C validator |