MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulf1o Structured version   Visualization version   GIF version

Theorem djulf1o 9903
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djulf1o inl:V–1-1-onto→({∅} × V)

Proof of Theorem djulf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inl 9893 . . 3 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 0ex 5306 . . . . . 6 ∅ ∈ V
32snid 4663 . . . . 5 ∅ ∈ {∅}
4 opelxpi 5712 . . . . 5 ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V))
53, 4mpan 688 . . . 4 (𝑥 ∈ V → ⟨∅, 𝑥⟩ ∈ ({∅} × V))
65adantl 482 . . 3 ((⊤ ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V))
7 fvexd 6903 . . 3 ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd𝑦) ∈ V)
8 1st2nd2 8010 . . . . . . . 8 (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
9 xp1st 8003 . . . . . . . . . 10 (𝑦 ∈ ({∅} × V) → (1st𝑦) ∈ {∅})
10 elsni 4644 . . . . . . . . . 10 ((1st𝑦) ∈ {∅} → (1st𝑦) = ∅)
119, 10syl 17 . . . . . . . . 9 (𝑦 ∈ ({∅} × V) → (1st𝑦) = ∅)
1211opeq1d 4878 . . . . . . . 8 (𝑦 ∈ ({∅} × V) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨∅, (2nd𝑦)⟩)
138, 12eqtrd 2772 . . . . . . 7 (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨∅, (2nd𝑦)⟩)
1413eqeq2d 2743 . . . . . 6 (𝑦 ∈ ({∅} × V) → (⟨∅, 𝑥⟩ = 𝑦 ↔ ⟨∅, 𝑥⟩ = ⟨∅, (2nd𝑦)⟩))
15 eqcom 2739 . . . . . 6 (⟨∅, 𝑥⟩ = 𝑦𝑦 = ⟨∅, 𝑥⟩)
16 eqid 2732 . . . . . . 7 ∅ = ∅
17 vex 3478 . . . . . . . 8 𝑥 ∈ V
182, 17opth 5475 . . . . . . 7 (⟨∅, 𝑥⟩ = ⟨∅, (2nd𝑦)⟩ ↔ (∅ = ∅ ∧ 𝑥 = (2nd𝑦)))
1916, 18mpbiran 707 . . . . . 6 (⟨∅, 𝑥⟩ = ⟨∅, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2014, 15, 193bitr3g 312 . . . . 5 (𝑦 ∈ ({∅} × V) → (𝑦 = ⟨∅, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2120bicomd 222 . . . 4 (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩))
2221ad2antll 727 . . 3 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩))
231, 6, 7, 22f1o2d 7656 . 2 (⊤ → inl:V–1-1-onto→({∅} × V))
2423mptru 1548 1 inl:V–1-1-onto→({∅} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wtru 1542  wcel 2106  Vcvv 3474  c0 4321  {csn 4627  cop 4633   × cxp 5673  1-1-ontowf1o 6539  cfv 6540  1st c1st 7969  2nd c2nd 7970  inlcinl 9890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1st 7971  df-2nd 7972  df-inl 9893
This theorem is referenced by:  inlresf  9905  inlresf1  9906  djuin  9909  djuun  9917
  Copyright terms: Public domain W3C validator