MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djulf1o Structured version   Visualization version   GIF version

Theorem djulf1o 9950
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djulf1o inl:V–1-1-onto→({∅} × V)

Proof of Theorem djulf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-inl 9940 . . 3 inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
2 0ex 5313 . . . . . 6 ∅ ∈ V
32snid 4667 . . . . 5 ∅ ∈ {∅}
4 opelxpi 5726 . . . . 5 ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V))
53, 4mpan 690 . . . 4 (𝑥 ∈ V → ⟨∅, 𝑥⟩ ∈ ({∅} × V))
65adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V))
7 fvexd 6922 . . 3 ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd𝑦) ∈ V)
8 1st2nd2 8052 . . . . . . . 8 (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
9 xp1st 8045 . . . . . . . . . 10 (𝑦 ∈ ({∅} × V) → (1st𝑦) ∈ {∅})
10 elsni 4648 . . . . . . . . . 10 ((1st𝑦) ∈ {∅} → (1st𝑦) = ∅)
119, 10syl 17 . . . . . . . . 9 (𝑦 ∈ ({∅} × V) → (1st𝑦) = ∅)
1211opeq1d 4884 . . . . . . . 8 (𝑦 ∈ ({∅} × V) → ⟨(1st𝑦), (2nd𝑦)⟩ = ⟨∅, (2nd𝑦)⟩)
138, 12eqtrd 2775 . . . . . . 7 (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨∅, (2nd𝑦)⟩)
1413eqeq2d 2746 . . . . . 6 (𝑦 ∈ ({∅} × V) → (⟨∅, 𝑥⟩ = 𝑦 ↔ ⟨∅, 𝑥⟩ = ⟨∅, (2nd𝑦)⟩))
15 eqcom 2742 . . . . . 6 (⟨∅, 𝑥⟩ = 𝑦𝑦 = ⟨∅, 𝑥⟩)
16 eqid 2735 . . . . . . 7 ∅ = ∅
17 vex 3482 . . . . . . . 8 𝑥 ∈ V
182, 17opth 5487 . . . . . . 7 (⟨∅, 𝑥⟩ = ⟨∅, (2nd𝑦)⟩ ↔ (∅ = ∅ ∧ 𝑥 = (2nd𝑦)))
1916, 18mpbiran 709 . . . . . 6 (⟨∅, 𝑥⟩ = ⟨∅, (2nd𝑦)⟩ ↔ 𝑥 = (2nd𝑦))
2014, 15, 193bitr3g 313 . . . . 5 (𝑦 ∈ ({∅} × V) → (𝑦 = ⟨∅, 𝑥⟩ ↔ 𝑥 = (2nd𝑦)))
2120bicomd 223 . . . 4 (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩))
2221ad2antll 729 . . 3 ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩))
231, 6, 7, 22f1o2d 7687 . 2 (⊤ → inl:V–1-1-onto→({∅} × V))
2423mptru 1544 1 inl:V–1-1-onto→({∅} × V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2106  Vcvv 3478  c0 4339  {csn 4631  cop 4637   × cxp 5687  1-1-ontowf1o 6562  cfv 6563  1st c1st 8011  2nd c2nd 8012  inlcinl 9937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-2nd 8014  df-inl 9940
This theorem is referenced by:  inlresf  9952  inlresf1  9953  djuin  9956  djuun  9964
  Copyright terms: Public domain W3C validator