![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > djulf1o | Structured version Visualization version GIF version |
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022.) |
Ref | Expression |
---|---|
djulf1o | ⊢ inl:V–1-1-onto→({∅} × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inl 9893 | . . 3 ⊢ inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩) | |
2 | 0ex 5306 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | 2 | snid 4663 | . . . . 5 ⊢ ∅ ∈ {∅} |
4 | opelxpi 5712 | . . . . 5 ⊢ ((∅ ∈ {∅} ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝑥 ∈ V → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) |
6 | 5 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ V) → ⟨∅, 𝑥⟩ ∈ ({∅} × V)) |
7 | fvexd 6903 | . . 3 ⊢ ((⊤ ∧ 𝑦 ∈ ({∅} × V)) → (2nd ‘𝑦) ∈ V) | |
8 | 1st2nd2 8010 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨(1st ‘𝑦), (2nd ‘𝑦)⟩) | |
9 | xp1st 8003 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) ∈ {∅}) | |
10 | elsni 4644 | . . . . . . . . . 10 ⊢ ((1st ‘𝑦) ∈ {∅} → (1st ‘𝑦) = ∅) | |
11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝑦 ∈ ({∅} × V) → (1st ‘𝑦) = ∅) |
12 | 11 | opeq1d 4878 | . . . . . . . 8 ⊢ (𝑦 ∈ ({∅} × V) → ⟨(1st ‘𝑦), (2nd ‘𝑦)⟩ = ⟨∅, (2nd ‘𝑦)⟩) |
13 | 8, 12 | eqtrd 2772 | . . . . . . 7 ⊢ (𝑦 ∈ ({∅} × V) → 𝑦 = ⟨∅, (2nd ‘𝑦)⟩) |
14 | 13 | eqeq2d 2743 | . . . . . 6 ⊢ (𝑦 ∈ ({∅} × V) → (⟨∅, 𝑥⟩ = 𝑦 ↔ ⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩)) |
15 | eqcom 2739 | . . . . . 6 ⊢ (⟨∅, 𝑥⟩ = 𝑦 ↔ 𝑦 = ⟨∅, 𝑥⟩) | |
16 | eqid 2732 | . . . . . . 7 ⊢ ∅ = ∅ | |
17 | vex 3478 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
18 | 2, 17 | opth 5475 | . . . . . . 7 ⊢ (⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩ ↔ (∅ = ∅ ∧ 𝑥 = (2nd ‘𝑦))) |
19 | 16, 18 | mpbiran 707 | . . . . . 6 ⊢ (⟨∅, 𝑥⟩ = ⟨∅, (2nd ‘𝑦)⟩ ↔ 𝑥 = (2nd ‘𝑦)) |
20 | 14, 15, 19 | 3bitr3g 312 | . . . . 5 ⊢ (𝑦 ∈ ({∅} × V) → (𝑦 = ⟨∅, 𝑥⟩ ↔ 𝑥 = (2nd ‘𝑦))) |
21 | 20 | bicomd 222 | . . . 4 ⊢ (𝑦 ∈ ({∅} × V) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩)) |
22 | 21 | ad2antll 727 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ({∅} × V))) → (𝑥 = (2nd ‘𝑦) ↔ 𝑦 = ⟨∅, 𝑥⟩)) |
23 | 1, 6, 7, 22 | f1o2d 7656 | . 2 ⊢ (⊤ → inl:V–1-1-onto→({∅} × V)) |
24 | 23 | mptru 1548 | 1 ⊢ inl:V–1-1-onto→({∅} × V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ⊤wtru 1542 ∈ wcel 2106 Vcvv 3474 ∅c0 4321 {csn 4627 ⟨cop 4633 × cxp 5673 –1-1-onto→wf1o 6539 ‘cfv 6540 1st c1st 7969 2nd c2nd 7970 inlcinl 9890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-1st 7971 df-2nd 7972 df-inl 9893 |
This theorem is referenced by: inlresf 9905 inlresf1 9906 djuin 9909 djuun 9917 |
Copyright terms: Public domain | W3C validator |