MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuun Structured version   Visualization version   GIF version

Theorem djuun 9507
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djuun ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)

Proof of Theorem djuun
Dummy variables 𝑥 𝑦 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elun 4049 . . . 4 (𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)) ↔ (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)))
2 djulf1o 9493 . . . . . . . . . . 11 inl:V–1-1-onto→({∅} × V)
3 f1ofn 6640 . . . . . . . . . . 11 (inl:V–1-1-onto→({∅} × V) → inl Fn V)
42, 3ax-mp 5 . . . . . . . . . 10 inl Fn V
5 ssv 3911 . . . . . . . . . 10 𝐴 ⊆ V
6 fvelimab 6762 . . . . . . . . . 10 ((inl Fn V ∧ 𝐴 ⊆ V) → (𝑥 ∈ (inl “ 𝐴) ↔ ∃𝑢𝐴 (inl‘𝑢) = 𝑥))
74, 5, 6mp2an 692 . . . . . . . . 9 (𝑥 ∈ (inl “ 𝐴) ↔ ∃𝑢𝐴 (inl‘𝑢) = 𝑥)
87biimpi 219 . . . . . . . 8 (𝑥 ∈ (inl “ 𝐴) → ∃𝑢𝐴 (inl‘𝑢) = 𝑥)
9 simprr 773 . . . . . . . . 9 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → (inl‘𝑢) = 𝑥)
10 vex 3402 . . . . . . . . . . 11 𝑢 ∈ V
11 opex 5333 . . . . . . . . . . 11 ⟨∅, 𝑢⟩ ∈ V
12 opeq2 4771 . . . . . . . . . . . 12 (𝑧 = 𝑢 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑢⟩)
13 df-inl 9483 . . . . . . . . . . . 12 inl = (𝑧 ∈ V ↦ ⟨∅, 𝑧⟩)
1412, 13fvmptg 6794 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ ⟨∅, 𝑢⟩ ∈ V) → (inl‘𝑢) = ⟨∅, 𝑢⟩)
1510, 11, 14mp2an 692 . . . . . . . . . 10 (inl‘𝑢) = ⟨∅, 𝑢
16 0ex 5185 . . . . . . . . . . . . 13 ∅ ∈ V
1716snid 4563 . . . . . . . . . . . 12 ∅ ∈ {∅}
18 opelxpi 5573 . . . . . . . . . . . 12 ((∅ ∈ {∅} ∧ 𝑢𝐴) → ⟨∅, 𝑢⟩ ∈ ({∅} × 𝐴))
1917, 18mpan 690 . . . . . . . . . . 11 (𝑢𝐴 → ⟨∅, 𝑢⟩ ∈ ({∅} × 𝐴))
2019ad2antrl 728 . . . . . . . . . 10 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → ⟨∅, 𝑢⟩ ∈ ({∅} × 𝐴))
2115, 20eqeltrid 2835 . . . . . . . . 9 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → (inl‘𝑢) ∈ ({∅} × 𝐴))
229, 21eqeltrrd 2832 . . . . . . . 8 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → 𝑥 ∈ ({∅} × 𝐴))
238, 22rexlimddv 3200 . . . . . . 7 (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ ({∅} × 𝐴))
24 elun1 4076 . . . . . . 7 (𝑥 ∈ ({∅} × 𝐴) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2523, 24syl 17 . . . . . 6 (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
26 df-dju 9482 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2725, 26eleqtrrdi 2842 . . . . 5 (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ (𝐴𝐵))
28 djurf1o 9494 . . . . . . . . . . 11 inr:V–1-1-onto→({1o} × V)
29 f1ofn 6640 . . . . . . . . . . 11 (inr:V–1-1-onto→({1o} × V) → inr Fn V)
3028, 29ax-mp 5 . . . . . . . . . 10 inr Fn V
31 ssv 3911 . . . . . . . . . 10 𝐵 ⊆ V
32 fvelimab 6762 . . . . . . . . . 10 ((inr Fn V ∧ 𝐵 ⊆ V) → (𝑥 ∈ (inr “ 𝐵) ↔ ∃𝑢𝐵 (inr‘𝑢) = 𝑥))
3330, 31, 32mp2an 692 . . . . . . . . 9 (𝑥 ∈ (inr “ 𝐵) ↔ ∃𝑢𝐵 (inr‘𝑢) = 𝑥)
3433biimpi 219 . . . . . . . 8 (𝑥 ∈ (inr “ 𝐵) → ∃𝑢𝐵 (inr‘𝑢) = 𝑥)
35 simprr 773 . . . . . . . . 9 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → (inr‘𝑢) = 𝑥)
36 opex 5333 . . . . . . . . . . 11 ⟨1o, 𝑢⟩ ∈ V
37 opeq2 4771 . . . . . . . . . . . 12 (𝑧 = 𝑢 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑢⟩)
38 df-inr 9484 . . . . . . . . . . . 12 inr = (𝑧 ∈ V ↦ ⟨1o, 𝑧⟩)
3937, 38fvmptg 6794 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ ⟨1o, 𝑢⟩ ∈ V) → (inr‘𝑢) = ⟨1o, 𝑢⟩)
4010, 36, 39mp2an 692 . . . . . . . . . 10 (inr‘𝑢) = ⟨1o, 𝑢
41 1oex 8193 . . . . . . . . . . . . 13 1o ∈ V
4241snid 4563 . . . . . . . . . . . 12 1o ∈ {1o}
43 opelxpi 5573 . . . . . . . . . . . 12 ((1o ∈ {1o} ∧ 𝑢𝐵) → ⟨1o, 𝑢⟩ ∈ ({1o} × 𝐵))
4442, 43mpan 690 . . . . . . . . . . 11 (𝑢𝐵 → ⟨1o, 𝑢⟩ ∈ ({1o} × 𝐵))
4544ad2antrl 728 . . . . . . . . . 10 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → ⟨1o, 𝑢⟩ ∈ ({1o} × 𝐵))
4640, 45eqeltrid 2835 . . . . . . . . 9 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → (inr‘𝑢) ∈ ({1o} × 𝐵))
4735, 46eqeltrrd 2832 . . . . . . . 8 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → 𝑥 ∈ ({1o} × 𝐵))
4834, 47rexlimddv 3200 . . . . . . 7 (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ ({1o} × 𝐵))
49 elun2 4077 . . . . . . 7 (𝑥 ∈ ({1o} × 𝐵) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
5048, 49syl 17 . . . . . 6 (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
5150, 26eleqtrrdi 2842 . . . . 5 (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ (𝐴𝐵))
5227, 51jaoi 857 . . . 4 ((𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)) → 𝑥 ∈ (𝐴𝐵))
531, 52sylbi 220 . . 3 (𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)) → 𝑥 ∈ (𝐴𝐵))
5453ssriv 3891 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) ⊆ (𝐴𝐵)
55 djur 9500 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
56 vex 3402 . . . . . . . . . 10 𝑦 ∈ V
57 f1odm 6643 . . . . . . . . . . 11 (inl:V–1-1-onto→({∅} × V) → dom inl = V)
582, 57ax-mp 5 . . . . . . . . . 10 dom inl = V
5956, 58eleqtrri 2830 . . . . . . . . 9 𝑦 ∈ dom inl
60 simpl 486 . . . . . . . . 9 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑦𝐴)
6113funmpt2 6397 . . . . . . . . . 10 Fun inl
62 funfvima 7024 . . . . . . . . . 10 ((Fun inl ∧ 𝑦 ∈ dom inl) → (𝑦𝐴 → (inl‘𝑦) ∈ (inl “ 𝐴)))
6361, 62mpan 690 . . . . . . . . 9 (𝑦 ∈ dom inl → (𝑦𝐴 → (inl‘𝑦) ∈ (inl “ 𝐴)))
6459, 60, 63mpsyl 68 . . . . . . . 8 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) ∈ (inl “ 𝐴))
65 eleq1 2818 . . . . . . . . 9 (𝑥 = (inl‘𝑦) → (𝑥 ∈ (inl “ 𝐴) ↔ (inl‘𝑦) ∈ (inl “ 𝐴)))
6665adantl 485 . . . . . . . 8 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (𝑥 ∈ (inl “ 𝐴) ↔ (inl‘𝑦) ∈ (inl “ 𝐴)))
6764, 66mpbird 260 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ (inl “ 𝐴))
6867rexlimiva 3190 . . . . . 6 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ (inl “ 𝐴))
69 f1odm 6643 . . . . . . . . . . 11 (inr:V–1-1-onto→({1o} × V) → dom inr = V)
7028, 69ax-mp 5 . . . . . . . . . 10 dom inr = V
7156, 70eleqtrri 2830 . . . . . . . . 9 𝑦 ∈ dom inr
72 simpl 486 . . . . . . . . 9 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦𝐵)
73 f1ofun 6641 . . . . . . . . . . 11 (inr:V–1-1-onto→({1o} × V) → Fun inr)
7428, 73ax-mp 5 . . . . . . . . . 10 Fun inr
75 funfvima 7024 . . . . . . . . . 10 ((Fun inr ∧ 𝑦 ∈ dom inr) → (𝑦𝐵 → (inr‘𝑦) ∈ (inr “ 𝐵)))
7674, 75mpan 690 . . . . . . . . 9 (𝑦 ∈ dom inr → (𝑦𝐵 → (inr‘𝑦) ∈ (inr “ 𝐵)))
7771, 72, 76mpsyl 68 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) ∈ (inr “ 𝐵))
78 eleq1 2818 . . . . . . . . 9 (𝑥 = (inr‘𝑦) → (𝑥 ∈ (inr “ 𝐵) ↔ (inr‘𝑦) ∈ (inr “ 𝐵)))
7978adantl 485 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (𝑥 ∈ (inr “ 𝐵) ↔ (inr‘𝑦) ∈ (inr “ 𝐵)))
8077, 79mpbird 260 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ (inr “ 𝐵))
8180rexlimiva 3190 . . . . . 6 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ (inr “ 𝐵))
8268, 81orim12i 909 . . . . 5 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)))
8355, 82syl 17 . . . 4 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)))
8483, 1sylibr 237 . . 3 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)))
8584ssriv 3891 . 2 (𝐴𝐵) ⊆ ((inl “ 𝐴) ∪ (inr “ 𝐵))
8654, 85eqssi 3903 1 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wrex 3052  Vcvv 3398  cun 3851  wss 3853  c0 4223  {csn 4527  cop 4533   × cxp 5534  dom cdm 5536  cima 5539  Fun wfun 6352   Fn wfn 6353  1-1-ontowf1o 6357  cfv 6358  1oc1o 8173  cdju 9479  inlcinl 9480  inrcinr 9481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-1st 7739  df-2nd 7740  df-1o 8180  df-dju 9482  df-inl 9483  df-inr 9484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator