MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djuun Structured version   Visualization version   GIF version

Theorem djuun 9886
Description: The disjoint union of two classes is the union of the images of those two classes under right and left injection. (Contributed by Jim Kingdon, 22-Jun-2022.)
Assertion
Ref Expression
djuun ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)

Proof of Theorem djuun
Dummy variables 𝑥 𝑦 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elun 4119 . . . 4 (𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)) ↔ (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)))
2 djulf1o 9872 . . . . . . . . . . 11 inl:V–1-1-onto→({∅} × V)
3 f1ofn 6804 . . . . . . . . . . 11 (inl:V–1-1-onto→({∅} × V) → inl Fn V)
42, 3ax-mp 5 . . . . . . . . . 10 inl Fn V
5 ssv 3974 . . . . . . . . . 10 𝐴 ⊆ V
6 fvelimab 6936 . . . . . . . . . 10 ((inl Fn V ∧ 𝐴 ⊆ V) → (𝑥 ∈ (inl “ 𝐴) ↔ ∃𝑢𝐴 (inl‘𝑢) = 𝑥))
74, 5, 6mp2an 692 . . . . . . . . 9 (𝑥 ∈ (inl “ 𝐴) ↔ ∃𝑢𝐴 (inl‘𝑢) = 𝑥)
87biimpi 216 . . . . . . . 8 (𝑥 ∈ (inl “ 𝐴) → ∃𝑢𝐴 (inl‘𝑢) = 𝑥)
9 simprr 772 . . . . . . . . 9 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → (inl‘𝑢) = 𝑥)
10 vex 3454 . . . . . . . . . . 11 𝑢 ∈ V
11 opex 5427 . . . . . . . . . . 11 ⟨∅, 𝑢⟩ ∈ V
12 opeq2 4841 . . . . . . . . . . . 12 (𝑧 = 𝑢 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑢⟩)
13 df-inl 9862 . . . . . . . . . . . 12 inl = (𝑧 ∈ V ↦ ⟨∅, 𝑧⟩)
1412, 13fvmptg 6969 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ ⟨∅, 𝑢⟩ ∈ V) → (inl‘𝑢) = ⟨∅, 𝑢⟩)
1510, 11, 14mp2an 692 . . . . . . . . . 10 (inl‘𝑢) = ⟨∅, 𝑢
16 0ex 5265 . . . . . . . . . . . . 13 ∅ ∈ V
1716snid 4629 . . . . . . . . . . . 12 ∅ ∈ {∅}
18 opelxpi 5678 . . . . . . . . . . . 12 ((∅ ∈ {∅} ∧ 𝑢𝐴) → ⟨∅, 𝑢⟩ ∈ ({∅} × 𝐴))
1917, 18mpan 690 . . . . . . . . . . 11 (𝑢𝐴 → ⟨∅, 𝑢⟩ ∈ ({∅} × 𝐴))
2019ad2antrl 728 . . . . . . . . . 10 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → ⟨∅, 𝑢⟩ ∈ ({∅} × 𝐴))
2115, 20eqeltrid 2833 . . . . . . . . 9 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → (inl‘𝑢) ∈ ({∅} × 𝐴))
229, 21eqeltrrd 2830 . . . . . . . 8 ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢𝐴 ∧ (inl‘𝑢) = 𝑥)) → 𝑥 ∈ ({∅} × 𝐴))
238, 22rexlimddv 3141 . . . . . . 7 (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ ({∅} × 𝐴))
24 elun1 4148 . . . . . . 7 (𝑥 ∈ ({∅} × 𝐴) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
2523, 24syl 17 . . . . . 6 (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
26 df-dju 9861 . . . . . 6 (𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
2725, 26eleqtrrdi 2840 . . . . 5 (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ (𝐴𝐵))
28 djurf1o 9873 . . . . . . . . . . 11 inr:V–1-1-onto→({1o} × V)
29 f1ofn 6804 . . . . . . . . . . 11 (inr:V–1-1-onto→({1o} × V) → inr Fn V)
3028, 29ax-mp 5 . . . . . . . . . 10 inr Fn V
31 ssv 3974 . . . . . . . . . 10 𝐵 ⊆ V
32 fvelimab 6936 . . . . . . . . . 10 ((inr Fn V ∧ 𝐵 ⊆ V) → (𝑥 ∈ (inr “ 𝐵) ↔ ∃𝑢𝐵 (inr‘𝑢) = 𝑥))
3330, 31, 32mp2an 692 . . . . . . . . 9 (𝑥 ∈ (inr “ 𝐵) ↔ ∃𝑢𝐵 (inr‘𝑢) = 𝑥)
3433biimpi 216 . . . . . . . 8 (𝑥 ∈ (inr “ 𝐵) → ∃𝑢𝐵 (inr‘𝑢) = 𝑥)
35 simprr 772 . . . . . . . . 9 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → (inr‘𝑢) = 𝑥)
36 opex 5427 . . . . . . . . . . 11 ⟨1o, 𝑢⟩ ∈ V
37 opeq2 4841 . . . . . . . . . . . 12 (𝑧 = 𝑢 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑢⟩)
38 df-inr 9863 . . . . . . . . . . . 12 inr = (𝑧 ∈ V ↦ ⟨1o, 𝑧⟩)
3937, 38fvmptg 6969 . . . . . . . . . . 11 ((𝑢 ∈ V ∧ ⟨1o, 𝑢⟩ ∈ V) → (inr‘𝑢) = ⟨1o, 𝑢⟩)
4010, 36, 39mp2an 692 . . . . . . . . . 10 (inr‘𝑢) = ⟨1o, 𝑢
41 1oex 8447 . . . . . . . . . . . . 13 1o ∈ V
4241snid 4629 . . . . . . . . . . . 12 1o ∈ {1o}
43 opelxpi 5678 . . . . . . . . . . . 12 ((1o ∈ {1o} ∧ 𝑢𝐵) → ⟨1o, 𝑢⟩ ∈ ({1o} × 𝐵))
4442, 43mpan 690 . . . . . . . . . . 11 (𝑢𝐵 → ⟨1o, 𝑢⟩ ∈ ({1o} × 𝐵))
4544ad2antrl 728 . . . . . . . . . 10 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → ⟨1o, 𝑢⟩ ∈ ({1o} × 𝐵))
4640, 45eqeltrid 2833 . . . . . . . . 9 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → (inr‘𝑢) ∈ ({1o} × 𝐵))
4735, 46eqeltrrd 2830 . . . . . . . 8 ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢𝐵 ∧ (inr‘𝑢) = 𝑥)) → 𝑥 ∈ ({1o} × 𝐵))
4834, 47rexlimddv 3141 . . . . . . 7 (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ ({1o} × 𝐵))
49 elun2 4149 . . . . . . 7 (𝑥 ∈ ({1o} × 𝐵) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
5048, 49syl 17 . . . . . 6 (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵)))
5150, 26eleqtrrdi 2840 . . . . 5 (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ (𝐴𝐵))
5227, 51jaoi 857 . . . 4 ((𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)) → 𝑥 ∈ (𝐴𝐵))
531, 52sylbi 217 . . 3 (𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)) → 𝑥 ∈ (𝐴𝐵))
5453ssriv 3953 . 2 ((inl “ 𝐴) ∪ (inr “ 𝐵)) ⊆ (𝐴𝐵)
55 djur 9879 . . . . 5 (𝑥 ∈ (𝐴𝐵) → (∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)))
56 vex 3454 . . . . . . . . . 10 𝑦 ∈ V
57 f1odm 6807 . . . . . . . . . . 11 (inl:V–1-1-onto→({∅} × V) → dom inl = V)
582, 57ax-mp 5 . . . . . . . . . 10 dom inl = V
5956, 58eleqtrri 2828 . . . . . . . . 9 𝑦 ∈ dom inl
60 simpl 482 . . . . . . . . 9 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑦𝐴)
6113funmpt2 6558 . . . . . . . . . 10 Fun inl
62 funfvima 7207 . . . . . . . . . 10 ((Fun inl ∧ 𝑦 ∈ dom inl) → (𝑦𝐴 → (inl‘𝑦) ∈ (inl “ 𝐴)))
6361, 62mpan 690 . . . . . . . . 9 (𝑦 ∈ dom inl → (𝑦𝐴 → (inl‘𝑦) ∈ (inl “ 𝐴)))
6459, 60, 63mpsyl 68 . . . . . . . 8 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (inl‘𝑦) ∈ (inl “ 𝐴))
65 eleq1 2817 . . . . . . . . 9 (𝑥 = (inl‘𝑦) → (𝑥 ∈ (inl “ 𝐴) ↔ (inl‘𝑦) ∈ (inl “ 𝐴)))
6665adantl 481 . . . . . . . 8 ((𝑦𝐴𝑥 = (inl‘𝑦)) → (𝑥 ∈ (inl “ 𝐴) ↔ (inl‘𝑦) ∈ (inl “ 𝐴)))
6764, 66mpbird 257 . . . . . . 7 ((𝑦𝐴𝑥 = (inl‘𝑦)) → 𝑥 ∈ (inl “ 𝐴))
6867rexlimiva 3127 . . . . . 6 (∃𝑦𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ (inl “ 𝐴))
69 f1odm 6807 . . . . . . . . . . 11 (inr:V–1-1-onto→({1o} × V) → dom inr = V)
7028, 69ax-mp 5 . . . . . . . . . 10 dom inr = V
7156, 70eleqtrri 2828 . . . . . . . . 9 𝑦 ∈ dom inr
72 simpl 482 . . . . . . . . 9 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑦𝐵)
73 f1ofun 6805 . . . . . . . . . . 11 (inr:V–1-1-onto→({1o} × V) → Fun inr)
7428, 73ax-mp 5 . . . . . . . . . 10 Fun inr
75 funfvima 7207 . . . . . . . . . 10 ((Fun inr ∧ 𝑦 ∈ dom inr) → (𝑦𝐵 → (inr‘𝑦) ∈ (inr “ 𝐵)))
7674, 75mpan 690 . . . . . . . . 9 (𝑦 ∈ dom inr → (𝑦𝐵 → (inr‘𝑦) ∈ (inr “ 𝐵)))
7771, 72, 76mpsyl 68 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (inr‘𝑦) ∈ (inr “ 𝐵))
78 eleq1 2817 . . . . . . . . 9 (𝑥 = (inr‘𝑦) → (𝑥 ∈ (inr “ 𝐵) ↔ (inr‘𝑦) ∈ (inr “ 𝐵)))
7978adantl 481 . . . . . . . 8 ((𝑦𝐵𝑥 = (inr‘𝑦)) → (𝑥 ∈ (inr “ 𝐵) ↔ (inr‘𝑦) ∈ (inr “ 𝐵)))
8077, 79mpbird 257 . . . . . . 7 ((𝑦𝐵𝑥 = (inr‘𝑦)) → 𝑥 ∈ (inr “ 𝐵))
8180rexlimiva 3127 . . . . . 6 (∃𝑦𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ (inr “ 𝐵))
8268, 81orim12i 908 . . . . 5 ((∃𝑦𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦𝐵 𝑥 = (inr‘𝑦)) → (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)))
8355, 82syl 17 . . . 4 (𝑥 ∈ (𝐴𝐵) → (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)))
8483, 1sylibr 234 . . 3 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)))
8584ssriv 3953 . 2 (𝐴𝐵) ⊆ ((inl “ 𝐴) ∪ (inr “ 𝐵))
8654, 85eqssi 3966 1 ((inl “ 𝐴) ∪ (inr “ 𝐵)) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cun 3915  wss 3917  c0 4299  {csn 4592  cop 4598   × cxp 5639  dom cdm 5641  cima 5644  Fun wfun 6508   Fn wfn 6509  1-1-ontowf1o 6513  cfv 6514  1oc1o 8430  cdju 9858  inlcinl 9859  inrcinr 9860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1st 7971  df-2nd 7972  df-1o 8437  df-dju 9861  df-inl 9862  df-inr 9863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator