Step | Hyp | Ref
| Expression |
1 | | elun 4079 |
. . . 4
⊢ (𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)) ↔ (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵))) |
2 | | djulf1o 9601 |
. . . . . . . . . . 11
⊢
inl:V–1-1-onto→({∅} × V) |
3 | | f1ofn 6701 |
. . . . . . . . . . 11
⊢
(inl:V–1-1-onto→({∅} × V) → inl Fn
V) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . . . 10
⊢ inl Fn
V |
5 | | ssv 3941 |
. . . . . . . . . 10
⊢ 𝐴 ⊆ V |
6 | | fvelimab 6823 |
. . . . . . . . . 10
⊢ ((inl Fn
V ∧ 𝐴 ⊆ V) →
(𝑥 ∈ (inl “
𝐴) ↔ ∃𝑢 ∈ 𝐴 (inl‘𝑢) = 𝑥)) |
7 | 4, 5, 6 | mp2an 688 |
. . . . . . . . 9
⊢ (𝑥 ∈ (inl “ 𝐴) ↔ ∃𝑢 ∈ 𝐴 (inl‘𝑢) = 𝑥) |
8 | 7 | biimpi 215 |
. . . . . . . 8
⊢ (𝑥 ∈ (inl “ 𝐴) → ∃𝑢 ∈ 𝐴 (inl‘𝑢) = 𝑥) |
9 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ (inl‘𝑢) = 𝑥)) → (inl‘𝑢) = 𝑥) |
10 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
11 | | opex 5373 |
. . . . . . . . . . 11
⊢
〈∅, 𝑢〉 ∈ V |
12 | | opeq2 4802 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → 〈∅, 𝑧〉 = 〈∅, 𝑢〉) |
13 | | df-inl 9591 |
. . . . . . . . . . . 12
⊢ inl =
(𝑧 ∈ V ↦
〈∅, 𝑧〉) |
14 | 12, 13 | fvmptg 6855 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ V ∧ 〈∅,
𝑢〉 ∈ V) →
(inl‘𝑢) =
〈∅, 𝑢〉) |
15 | 10, 11, 14 | mp2an 688 |
. . . . . . . . . 10
⊢
(inl‘𝑢) =
〈∅, 𝑢〉 |
16 | | 0ex 5226 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
17 | 16 | snid 4594 |
. . . . . . . . . . . 12
⊢ ∅
∈ {∅} |
18 | | opelxpi 5617 |
. . . . . . . . . . . 12
⊢ ((∅
∈ {∅} ∧ 𝑢
∈ 𝐴) →
〈∅, 𝑢〉
∈ ({∅} × 𝐴)) |
19 | 17, 18 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝐴 → 〈∅, 𝑢〉 ∈ ({∅} × 𝐴)) |
20 | 19 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ (inl‘𝑢) = 𝑥)) → 〈∅, 𝑢〉 ∈ ({∅} × 𝐴)) |
21 | 15, 20 | eqeltrid 2843 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ (inl‘𝑢) = 𝑥)) → (inl‘𝑢) ∈ ({∅} × 𝐴)) |
22 | 9, 21 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝑥 ∈ (inl “ 𝐴) ∧ (𝑢 ∈ 𝐴 ∧ (inl‘𝑢) = 𝑥)) → 𝑥 ∈ ({∅} × 𝐴)) |
23 | 8, 22 | rexlimddv 3219 |
. . . . . . 7
⊢ (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ ({∅} × 𝐴)) |
24 | | elun1 4106 |
. . . . . . 7
⊢ (𝑥 ∈ ({∅} × 𝐴) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
26 | | df-dju 9590 |
. . . . . 6
⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
27 | 25, 26 | eleqtrrdi 2850 |
. . . . 5
⊢ (𝑥 ∈ (inl “ 𝐴) → 𝑥 ∈ (𝐴 ⊔ 𝐵)) |
28 | | djurf1o 9602 |
. . . . . . . . . . 11
⊢
inr:V–1-1-onto→({1o} × V) |
29 | | f1ofn 6701 |
. . . . . . . . . . 11
⊢
(inr:V–1-1-onto→({1o} × V) → inr Fn
V) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . . . 10
⊢ inr Fn
V |
31 | | ssv 3941 |
. . . . . . . . . 10
⊢ 𝐵 ⊆ V |
32 | | fvelimab 6823 |
. . . . . . . . . 10
⊢ ((inr Fn
V ∧ 𝐵 ⊆ V) →
(𝑥 ∈ (inr “
𝐵) ↔ ∃𝑢 ∈ 𝐵 (inr‘𝑢) = 𝑥)) |
33 | 30, 31, 32 | mp2an 688 |
. . . . . . . . 9
⊢ (𝑥 ∈ (inr “ 𝐵) ↔ ∃𝑢 ∈ 𝐵 (inr‘𝑢) = 𝑥) |
34 | 33 | biimpi 215 |
. . . . . . . 8
⊢ (𝑥 ∈ (inr “ 𝐵) → ∃𝑢 ∈ 𝐵 (inr‘𝑢) = 𝑥) |
35 | | simprr 769 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ (inr‘𝑢) = 𝑥)) → (inr‘𝑢) = 𝑥) |
36 | | opex 5373 |
. . . . . . . . . . 11
⊢
〈1o, 𝑢〉 ∈ V |
37 | | opeq2 4802 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑢 → 〈1o, 𝑧〉 = 〈1o,
𝑢〉) |
38 | | df-inr 9592 |
. . . . . . . . . . . 12
⊢ inr =
(𝑧 ∈ V ↦
〈1o, 𝑧〉) |
39 | 37, 38 | fvmptg 6855 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ V ∧
〈1o, 𝑢〉 ∈ V) → (inr‘𝑢) = 〈1o, 𝑢〉) |
40 | 10, 36, 39 | mp2an 688 |
. . . . . . . . . 10
⊢
(inr‘𝑢) =
〈1o, 𝑢〉 |
41 | | 1oex 8280 |
. . . . . . . . . . . . 13
⊢
1o ∈ V |
42 | 41 | snid 4594 |
. . . . . . . . . . . 12
⊢
1o ∈ {1o} |
43 | | opelxpi 5617 |
. . . . . . . . . . . 12
⊢
((1o ∈ {1o} ∧ 𝑢 ∈ 𝐵) → 〈1o, 𝑢〉 ∈ ({1o}
× 𝐵)) |
44 | 42, 43 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ 𝐵 → 〈1o, 𝑢〉 ∈ ({1o}
× 𝐵)) |
45 | 44 | ad2antrl 724 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ (inr‘𝑢) = 𝑥)) → 〈1o, 𝑢〉 ∈ ({1o}
× 𝐵)) |
46 | 40, 45 | eqeltrid 2843 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ (inr‘𝑢) = 𝑥)) → (inr‘𝑢) ∈ ({1o} × 𝐵)) |
47 | 35, 46 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝑥 ∈ (inr “ 𝐵) ∧ (𝑢 ∈ 𝐵 ∧ (inr‘𝑢) = 𝑥)) → 𝑥 ∈ ({1o} × 𝐵)) |
48 | 34, 47 | rexlimddv 3219 |
. . . . . . 7
⊢ (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ ({1o} × 𝐵)) |
49 | | elun2 4107 |
. . . . . . 7
⊢ (𝑥 ∈ ({1o} ×
𝐵) → 𝑥 ∈ (({∅} ×
𝐴) ∪ ({1o}
× 𝐵))) |
50 | 48, 49 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ (({∅} × 𝐴) ∪ ({1o} × 𝐵))) |
51 | 50, 26 | eleqtrrdi 2850 |
. . . . 5
⊢ (𝑥 ∈ (inr “ 𝐵) → 𝑥 ∈ (𝐴 ⊔ 𝐵)) |
52 | 27, 51 | jaoi 853 |
. . . 4
⊢ ((𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵)) → 𝑥 ∈ (𝐴 ⊔ 𝐵)) |
53 | 1, 52 | sylbi 216 |
. . 3
⊢ (𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵)) → 𝑥 ∈ (𝐴 ⊔ 𝐵)) |
54 | 53 | ssriv 3921 |
. 2
⊢ ((inl
“ 𝐴) ∪ (inr
“ 𝐵)) ⊆ (𝐴 ⊔ 𝐵) |
55 | | djur 9608 |
. . . . 5
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦 ∈ 𝐵 𝑥 = (inr‘𝑦))) |
56 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
57 | | f1odm 6704 |
. . . . . . . . . . 11
⊢
(inl:V–1-1-onto→({∅} × V) → dom inl =
V) |
58 | 2, 57 | ax-mp 5 |
. . . . . . . . . 10
⊢ dom inl =
V |
59 | 56, 58 | eleqtrri 2838 |
. . . . . . . . 9
⊢ 𝑦 ∈ dom inl |
60 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑦 ∈ 𝐴) |
61 | 13 | funmpt2 6457 |
. . . . . . . . . 10
⊢ Fun
inl |
62 | | funfvima 7088 |
. . . . . . . . . 10
⊢ ((Fun inl
∧ 𝑦 ∈ dom inl)
→ (𝑦 ∈ 𝐴 → (inl‘𝑦) ∈ (inl “ 𝐴))) |
63 | 61, 62 | mpan 686 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom inl → (𝑦 ∈ 𝐴 → (inl‘𝑦) ∈ (inl “ 𝐴))) |
64 | 59, 60, 63 | mpsyl 68 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → (inl‘𝑦) ∈ (inl “ 𝐴)) |
65 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = (inl‘𝑦) → (𝑥 ∈ (inl “ 𝐴) ↔ (inl‘𝑦) ∈ (inl “ 𝐴))) |
66 | 65 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → (𝑥 ∈ (inl “ 𝐴) ↔ (inl‘𝑦) ∈ (inl “ 𝐴))) |
67 | 64, 66 | mpbird 256 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑥 = (inl‘𝑦)) → 𝑥 ∈ (inl “ 𝐴)) |
68 | 67 | rexlimiva 3209 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐴 𝑥 = (inl‘𝑦) → 𝑥 ∈ (inl “ 𝐴)) |
69 | | f1odm 6704 |
. . . . . . . . . . 11
⊢
(inr:V–1-1-onto→({1o} × V) → dom inr =
V) |
70 | 28, 69 | ax-mp 5 |
. . . . . . . . . 10
⊢ dom inr =
V |
71 | 56, 70 | eleqtrri 2838 |
. . . . . . . . 9
⊢ 𝑦 ∈ dom inr |
72 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑦 ∈ 𝐵) |
73 | | f1ofun 6702 |
. . . . . . . . . . 11
⊢
(inr:V–1-1-onto→({1o} × V) → Fun
inr) |
74 | 28, 73 | ax-mp 5 |
. . . . . . . . . 10
⊢ Fun
inr |
75 | | funfvima 7088 |
. . . . . . . . . 10
⊢ ((Fun inr
∧ 𝑦 ∈ dom inr)
→ (𝑦 ∈ 𝐵 → (inr‘𝑦) ∈ (inr “ 𝐵))) |
76 | 74, 75 | mpan 686 |
. . . . . . . . 9
⊢ (𝑦 ∈ dom inr → (𝑦 ∈ 𝐵 → (inr‘𝑦) ∈ (inr “ 𝐵))) |
77 | 71, 72, 76 | mpsyl 68 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → (inr‘𝑦) ∈ (inr “ 𝐵)) |
78 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑥 = (inr‘𝑦) → (𝑥 ∈ (inr “ 𝐵) ↔ (inr‘𝑦) ∈ (inr “ 𝐵))) |
79 | 78 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → (𝑥 ∈ (inr “ 𝐵) ↔ (inr‘𝑦) ∈ (inr “ 𝐵))) |
80 | 77, 79 | mpbird 256 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑥 = (inr‘𝑦)) → 𝑥 ∈ (inr “ 𝐵)) |
81 | 80 | rexlimiva 3209 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 𝑥 = (inr‘𝑦) → 𝑥 ∈ (inr “ 𝐵)) |
82 | 68, 81 | orim12i 905 |
. . . . 5
⊢
((∃𝑦 ∈
𝐴 𝑥 = (inl‘𝑦) ∨ ∃𝑦 ∈ 𝐵 𝑥 = (inr‘𝑦)) → (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵))) |
83 | 55, 82 | syl 17 |
. . . 4
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → (𝑥 ∈ (inl “ 𝐴) ∨ 𝑥 ∈ (inr “ 𝐵))) |
84 | 83, 1 | sylibr 233 |
. . 3
⊢ (𝑥 ∈ (𝐴 ⊔ 𝐵) → 𝑥 ∈ ((inl “ 𝐴) ∪ (inr “ 𝐵))) |
85 | 84 | ssriv 3921 |
. 2
⊢ (𝐴 ⊔ 𝐵) ⊆ ((inl “ 𝐴) ∪ (inr “ 𝐵)) |
86 | 54, 85 | eqssi 3933 |
1
⊢ ((inl
“ 𝐴) ∪ (inr
“ 𝐵)) = (𝐴 ⊔ 𝐵) |